One can say $x \sim y$ iff $\frac{x}{y}\in\mathbb{Q(\sqrt{7})}(:=\{a +b\sqrt{7}~|~a,b\in\mathbb{Q} \})$.
So if we want $ker(f)=~\sim ~$, we need: $f(x)=f(y)$ iff $\frac{x}{y}\in\mathbb{Q(\sqrt{7})}$.
Intuition:
If $f(1)=a$, we get $f(x)=a$ iff $x=\frac{x}{1}\in\mathbb{Q(\sqrt{7})}$.
So we get all elements from $\mathbb{Q}(\sqrt{7})$ go to $a$.
In the same manner, we get for some $r\in\mathbb{R}$:
if $f(r)=k$ than $f(x)=k$ iff $\frac{x}{r}\in\mathbb{Q(\sqrt{7})}\iff x\in r\cdot\mathbb{Q(\sqrt{7})}$
By this logic, we see that each equivalence class is of the type:
$r\cdot\mathbb{Q(\sqrt{7})}$.
We can indeed see that:$$r\cdot\mathbb{Q(\sqrt{7})} = k\cdot\mathbb{Q(\sqrt{7})}\iff r(a +b\sqrt{7})=k(c +d\sqrt{7})\iff\frac{r}{k}=\frac{a +b\sqrt{7}}{c +d\sqrt{7}}\in\mathbb{Q}(\sqrt{7})$$
And the same in the opposite way if $\frac{r}{k}\in\mathbb{Q}(\sqrt{7})$ we can get $r\cdot\mathbb{Q(\sqrt{7})} = k\cdot\mathbb{Q(\sqrt{7})}$.
Define $A:=\{r\cdot\mathbb{Q(\sqrt{7})}~|~r\in\mathbb{R}\backslash\{0\}\}$.
We can define $f$ as follows:
$$f:\mathbb{R}\backslash \{0\}\rightarrow A\\x\mapsto x\cdot\mathbb{Q}(\sqrt{7})$$
We get $f(x)=f(y) \iff x\cdot\mathbb{Q(\sqrt{7})} = y\cdot\mathbb{Q(\sqrt{7})}\iff\frac{x}{y}\in\mathbb{Q}(\sqrt{7})\iff x \sim y$