We can prove this step by step, beginning with a sequences. Consider the sequence $\frac{n^a}{b^n}$, where $b>1$ and $a>0$ are real numbers. Let $b=1+\lambda$, where $\lambda>0$. Then by binom formula we have
$$b^n= (1+\lambda)^n=1+n\lambda+\frac{n(n-1)}{2}\lambda^2+...>$$
$$>\frac{n(n-1)}{2}\lambda^2. $$
Because for $n>2$ we have $n-1>\frac{n}{2}$, we have
$$b^n>\frac{(b-1)^2}{4}n^2.$$
For $a=1$ we get that $\frac{n}{b^n}<\frac{4}{(b-1)^2}\cdot \frac{1}{n}$ and
$$\lim\limits_{n\to\infty}\frac{n}{b^n}=0.$$
Since this result is correct for all $b>1$, then taking $a>1$ we have
$$\frac{n^a}{b^n}=\left( \frac{n}{(b^{1/a})^n} \right)^a< \frac{n}{(b^{1/a})^n}.$$
Therefore,
$$\lim\limits_{n\to\infty} \frac{n^a}{b^n}=0.$$
Proved thus for $a\ge 1$, this result is all the more true for $a<1$.
Now let's go to the limit of the function. From previous we already know that $\lim\limits_{n\to\infty}\frac{n}{b^n}=0$. Then $\lim\limits_{n\to\infty}\frac{n+1}{b^n}=0$.
By the definition for given $\epsilon>0$ there exists natural number $N$ such that for all $n>N$ we have $\frac{n+1}{b^n}<\epsilon$.
Now let $x>N+1$. If we put $n=[x]$, then
$$ n>N \text{ and } n\le x<n+1,$$
so
$$\frac{x}{b^x}<\frac{n+1}{b^n}<\epsilon$$
and $\lim\limits_{x\to+\infty}\frac{x}{b^x}=0$.
Similarly, from here we get that for $a>1$
$$\frac{x^a}{b^x}=\left( \frac{x}{(b^{1/a})^x} \right)^a< \frac{x}{(b^{1/a})^x}.$$
Hence,
$$\lim\limits_{x\to+\infty}\frac{x^a}{b^x}=0.$$
Obviously it's true also for $a<1$.
For $b=e$ we get our result.