To establish the integral relationship we can proceed as with this integral.
$$\int_0^\frac{1}{\sqrt 3}\frac{\operatorname{arccot}\left(\sqrt{2-x^2}\right)}{1+x^2}dx\overset{x\to \frac{1}{\sqrt x}} = \frac12\int_3^\infty \frac{\arctan\left(\frac{\sqrt x}{\sqrt{2x-1}}\right)}{\sqrt x(1+x)}dx$$
$$=\frac12\int_3^\infty \frac{1}{1+x}\left(\int_0^{\large \frac{1}{\sqrt{2x-1}}} \frac{1}{1+xy^2}dy\right)dx $$
$$= \frac12\int_0^\frac{1}{\sqrt 5}\int_3^{\large \frac{1+y^2}{2y^2}}\frac{dxdy}{(1+x)(1+y^2x)}=\frac12\int_0^\frac{1}{\sqrt 5} \frac{\ln\left(\frac{(1+3y^2)^2}{4y^2 (3+y^2)}\right)}{1-y^2}dy \tag{*}$$
We also have:
$$\int_0^\frac{1}{\sqrt 3} \frac{\operatorname{arccot}(\sqrt 5 x)}{1+x^2}dx=\int_0^\frac{1}{\sqrt 5}\int_0^\frac{1}{\sqrt 3}\frac{x}{(y^2+x^2)(1+x^2)}dxdy=\frac12 \int_0^\frac{1}{\sqrt 5} \frac{\ln\left(\frac{1+3y^2}{4y^2}\right)}{1-y^2}dy$$
$$\int_0^{\sqrt 3} \frac{\operatorname{arccot}(\sqrt 5 x)}{1+x^2}dx=\int_0^\frac{1}{\sqrt 5} \int_0^{\sqrt 3}\frac{x}{(y^2+x^2)(1+x^2)}dxdy=\frac12\int_0^\frac{1}{\sqrt 5} \frac{\ln\left(\frac{3+y^2}{4y^2}\right)}{1-y^2}dy$$
$$\Rightarrow \boxed{\int_0^\frac{1}{\sqrt 3}\frac{\operatorname{arccot}\left(\sqrt{2-x^2}\right)}{1+x^2}dx=2\int_0^\frac{1}{\sqrt 3} \frac{\operatorname{arccot}(\sqrt 5 x)}{1+x^2}dx-\int_0^{\sqrt 3} \frac{\operatorname{arccot}(\sqrt 5 x)}{1+x^2}dx}$$
It should also be mentioned that continuing from $(*)$, we get:
$$\frac12\int_0^\frac{1}{\sqrt 5} \frac{\ln\left(\frac{(1+3y^2)^2}{4y^2 (3+y^2)}\right)}{1-y^2}dy\overset{y=\frac{1-x}{1+x}}=\frac14\int_\frac{1}{\phi^2}^1\frac{\ln\left(\frac{(1+x^3)^2}{(1-x^3)(1-x)(1+x)^2}\right)}{x}dx,\ \phi=\frac{1+\sqrt 5}{2}$$
$$=\frac{\pi^2}{90} +\frac14 \ln^2(\phi)+\frac16\operatorname{Li_2}\left(-\frac{1}{\phi^6}\right)-\frac{1}{12}\operatorname{Li_2}\left(\frac{1}{\phi^6}\right)-\frac12\operatorname{Li_2}\left(-\frac{1}{\phi^2}\right)$$
And the remaining linear combination of dilogarithms might be extracted as it was described here, providing the final part of $\frac{\pi^2}{30}$, but that'll be just a brute force approach. Instead maybe it's more elegant to derive, combined with the other answer, the following dilogarithm identity (which might be unknown):
$$\boxed{2\operatorname{Li}_2\left(-\phi^{-6}\right)-\operatorname{Li}_2\left(\phi^{-6}\right)-6\operatorname{Li}_2\left(-\phi^{-2}\right)=\frac{4\pi^2}{15}-3\ln^2\left(\phi\right)}$$