I am working with a set of equations where I need to expand the sum of a geometric series to a power, something of the form: \begin{equation} \left[1+(ax)+(ax)^2+(ax)^3+\ldots\right]^n \quad \mbox{or} \quad \left(\sum_{j=0}^\infty (ax)^j\right)^n \quad \mbox{where} \quad |ax|<1 \end{equation} This operation is necessary as I need to equate the resulting coefficients of powers of $x$. I have straightforwardly determined that the $i$^th coefficient, $C_i$, of the expansion is given by:
for $n=1$:
\begin{equation} 1+(ax)+(ax)^2+(ax)^3+\ldots \quad \mbox{so} \quad C_i = 1 \end{equation}
for $n=2$:
\begin{equation} 1+2(ax)+3(ax)^2+4(ax)^3+\ldots \quad \mbox{so} \quad C_i = i \end{equation}
for $n=3$
\begin{equation} 1+3(ax)+6(ax)^2+10(ax)^3+\ldots\quad \mbox{so} \quad C_i = i\frac{\left(i+1\right)}{2} \end{equation}
and for $n=4$:
\begin{equation} 1+4(ax)+10(ax)^2+15(ax)^3+\ldots \quad \mbox{so} \quad C_i = i\frac{\left(i+1\right)}{2}\frac{\left(i+2\right)}{3} \end{equation}
and so on... Is there a general way to write this as a series in the form:
\begin{equation} \sum_{i=1}^\infty f\left(C_i\right) (ax)^{i-1} \end{equation}
I can see that this requires some form of factorial expression, but my factorial manipulation is very rusty. Any assistance gratefully received.