It can be verified that $$ \sum_{n=1}^{\infty}\frac{1}{\cosh(\pi n)^3\sinh(\pi n)^2} =\frac{11}{12}-\frac{3K}{2\pi}+\frac{K^2}{2\pi^2}-\frac{K^3}{\pi^3}$$ where $K=\frac{\Gamma\left ( \frac14 \right )^2 }{4\sqrt{\pi}}$(here and below) and $\Gamma(z)$ is the Euler Gamma function.
Proof. The proof relies on complex analysis. Let us directly consider the function
$$
f(z)=\frac{\operatorname{cs}\left(z,\frac{1}{\sqrt{2}}\right)}{\cosh(\frac{\pi z}{2K})^3\sinh(\frac{\pi z}{2K})^2}.
$$
Where $\operatorname{cs}(z,k)$ denotes one of Jacobi's elliptic functions. Integrate the function along a rectangular contour with vertices $-L,L,L+2Ki,-L+2Ki$ counterclockwise, where $L$ is a positive real number such that there is no pole on the left(or right) edge of the contour. To avoid poles on the upper and lower edges, construct infinite semicircles around the poles inside the rectangle with radius $r$.
Since $\operatorname{cs}$ has double periodicity and poles at $z=\{ (2m+2ni)K\mid (m,n)\in\mathbb{Z}^2\} $, we have
$$
\mathcal{P.V.}\int_{-L}^{L}[f(z)-f(z+2Ki)]\text{d}z+
\sum_{L_n\in\text{semicircles}}\int_{L_n}f(z)\text{d}z
+\int_{L}^{L+2Ki}f(z)\text{d}z+\int_{-L+2Ki}^{-L}f(z)\text{d}z
=2\pi i\sum_{z_k\in\text{poles inside the contour}}\operatorname{Res}(f(z),z_k).
$$
As $L\rightarrow+\infty$, the first, third and fourth integrals obviously vanish because $f(z)$ is odd. So we have
$$
\sum_{L_n\in\text{semicircles}}\int_{L_n}f(z)\text{d}z=2\pi i\sum_{z_k\in\text{poles inside the contour}}\operatorname{Res}(f(z),z_k).
$$
The rest is easy. Note that
$$
\sum_{L_n\in\text{semicircles}}\int_{L_n}f(z)\text{d}z=
-\pi i\sum_{z_k\in2K\mathbb{Z},2K\mathbb{Z}+2Ki}\operatorname{Res}(f,z_k)=-\pi i\left ( 4\sum_{n=1}^{\infty}\frac{1}{\cosh(\pi n)^3\sinh(\pi n)^2}+2\operatorname{Res}(f(z),0)\right).
$$
Then we get
$$
\sum_{n=1}^{\infty}\frac{1}{\cosh(\pi n)^3\sinh(\pi n)^2}=\frac12\left(-\operatorname{Res}(f,0)-\operatorname{Res}(f,iK)\right).
$$
The residues are easy to compute, then we prove the sum. We can compute the values of $S(2n+1,2k)=\sum_{m=1}^{\infty} \frac{1}{\cosh(\pi m)^{2n+1}
\sinh(\pi m)^{2k}},(n,k)\in\mathbb{Z}^2$ if the sum exists. For example,
$$
S(3,4)=-\frac{943}{720}+\frac{5K}{2\pi}
-\frac{13K^2}{12\pi^2}+\frac{K^3}{\pi^3}+\frac{K^4}{20\pi^4},$$
$$
\sum_{n=1}^{\infty} \frac{1}{\cosh(\pi n)^{11}}
=-\frac{1}{2}+\frac{63K^{}}{256\pi^{}}
+\frac{117469K^{3}}{201600\pi^{3}}+
\frac{17281K^{5}}{10080\pi^{5}}+\frac{3553K^{7}}{1200\pi^{7}}
+\frac{869K^{9}}{240\pi^{9}}+\frac{1381K^{11}}{600\pi^{11}}.
$$
Question 1: Can we prove the sum in an alternative way, or is there a simpler method to compute these $S(n,k)$?
Question 2: Is there a complex method to compute $S(2n,2k)$ for integers $n,k$?