5

Given an integer $N>1$, is it true that $$2^N=\sum_{m=0}^N\sum_{r=0}^n\sum_{s=0}^m(-1)^{n+m}(-2)^{r+s}\binom nr\binom ms\binom{N-r}m\binom{N-s}n$$ for all $0\le n\le N$?

This identity means that elements on the main diagonal of $T^2$ are all equal to $2^n$, where $T$ is an $(n+1)\times(n+1)$ matrix with elements $$T_{ij}=(-1)^i\sum_{k=0}^i\binom ik\binom{n-k}j(-2)^k.$$ It is the last step to resolving the problem Matrix performing local differintegral analysis being its own inverse. Coincidence? in an arbitrary dimension, and so far I have not been able to proceed.

I wonder if there is a combinatorial interpretation of the summand, since it cycles through $r,s$ in a symmetrical manner.

Marko Riedel
  • 61,317

1 Answers1

4

Here is a proof using combinatorial algebra on binomial coefficients. We seek to verify that with $N\ge 1$ and $0\le n\le N$ we have

$$2^N = \sum_{m=0}^N \sum_{r=0}^n \sum_{s=0}^m (-1)^{n+m} (-2)^{r+s} {n\choose r} {m\choose s} {N-r\choose m} {N-s\choose n}.$$

We can re-write the RHS as

$$\sum_{m=0}^N (-1)^{n+m} \sum_{r=0}^n (-2)^r {n\choose r} {N-r\choose m} \sum_{s=0}^m (-2)^s {m\choose s} {N-s\choose n}.$$

Working with the inner sum we get

$$[z^n] (1+z)^N \sum_{s=0}^m (-2)^s {m\choose s} (1+z)^{-s} \\ = [z^n] (1+z)^N (1-2/(1+z))^m = [z^n] (1+z)^{N-m} (z-1)^m.$$

The middle sum yields

$$[w^m] (1+w)^N \sum_{r=0}^n (-2)^r {n\choose r} (1+w)^{-r} \\ = [w^m] (1+w)^N (1-2/(1+w))^n = [w^m] (1+w)^{N-n} (w-1)^n.$$

Combining these in the outer sum we have

$$(-1)^n [z^n] (1+z)^N \sum_{m=0}^N (-1)^m (1+z)^{-m} (z-1)^m [w^m] (1+w)^{N-n} (w-1)^n \\ = (-1)^n [z^n] (1+z)^N \sum_{m=0}^N (-1)^{N-m} (1+z)^{-N+m} (z-1)^{N-m} [w^{N-m}] (1+w)^{N-n} (w-1)^n \\ = (-1)^{n+N} [z^n] (z-1)^N \sum_{m=0}^N (-1)^m (1+z)^m (z-1)^{-m} [w^{N-m}] (1+w)^{N-n} (w-1)^n \\ = (-1)^{n+N} [z^n] (z-1)^N [w^N] (1+w)^{N-n} (w-1)^n \sum_{m=0}^N (-1)^m (1+z)^m (z-1)^{-m} w^m.$$

We may extend the sum to infinity owing to the coefficient extractor in $w:$

$$(-1)^{n+N} [z^n] (z-1)^N [w^N] (1+w)^{N-n} (w-1)^n \frac{1}{1+(1+z)w/(z-1)} \\ = (-1)^{n+N} [z^n] (z-1)^{N+1} [w^N] (1+w)^{N-n} (w-1)^n \frac{1}{z-1+(1+z)w} \\ = (-1)^{n+N+1} [z^n] (z-1)^{N+1} [w^N] (1+w)^{N-n} (w-1)^n \frac{1}{1-z-w-wz}.$$

The contribution from $w$ is

$$\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{N+1}} (1+w)^{N-n} (w-1)^n \frac{1}{1-z-w-wz}.$$

Now put $w/(1+w) = v$ so that $w=v/(1-v)$ and $dw = 1/(1-v)^2 \; dv$ and $1+w = 1/(1-v)$ to get

$$\;\underset{v}{\mathrm{res}}\; \frac{1}{v^{N+1}} (1-v) (2v-1)^n \frac{1}{1-z-v/(1-v)-vz/(1-v)} \frac{1}{(1-v)^2} \\ = \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{N+1}} (2v-1)^n \frac{1}{(1-z)(1-v)-v-vz} \\ = \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{N+1}} (2v-1)^n \frac{1}{1-z-2v} \\ = (-1)^n \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{N+1}} (1-2v)^n \frac{1}{1-z-2v} \\ = (-1)^n \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{N+1}} (1-2v)^{n-1} \frac{1}{1-z/(1-2v)}.$$

Extracting the coefficient in $z$ we get

$$(-1)^{N+1} \sum_{q=0}^n {N+1\choose q} (-1)^{N+1-q} \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{N+1}} (1-2v)^{n-1} \frac{1}{(1-2v)^{n-q}} \\ = (-1)^{N+1} \sum_{q=0}^n {N+1\choose q} (-1)^{N+1-q} \;\underset{v}{\mathrm{res}}\; \frac{1}{v^{N+1}} (1-2v)^{q-1} \\ = (-1)^{N+1} \sum_{q=0}^n {N+1\choose q} (-1)^{N+1-q} {q-1\choose N} 2^N (-1)^N \\ = 2^N (-1)^N \sum_{q=0}^n {N+1\choose q} (-1)^q {q-1\choose N} \\ = 2^N + 2^N (-1)^N \sum_{q=1}^n {N+1\choose q} (-1)^q {q-1\choose N}$$

We almost have the claim. We get for the remaining sum

$$2^N (-1)^N (N+1) \sum_{q=1}^n \frac{1}{q} (-1)^q {N\choose q-1} {q-1\choose N}.$$

The only non-zero pair of binomial coefficients is when $q=N+1$. But $q\le n$ and $n\le N$ as per the original problem, so we get zero and may conclude. We also see that when $n\gt N$ the sum contributes with one term for a total of

$$2^N + 2^N (-1)^N (N+1) \frac{(-1)^{N+1}}{N+1} = 0.$$

Remark. For the case when $N=0$ there is only one possible value for $n$, which is zero also. Recall the closed form

$$(-1)^{n+N+1} [z^n] (z-1)^{N+1} [w^N] (1+w)^{N-n} (w-1)^n \frac{1}{1-z-w-wz}.$$

In this case we are extracting the constant coefficients. We get starting with $w$

$$(-1)^{n+N+1} [z^n] (z-1)^{N+1} \frac{(-1)^n}{1-z} = (-1)^{N+1} (-1)^{N+1} = 1.$$

This means that the formula holds for $N=0$ as well.

Marko Riedel
  • 61,317