Let $(a_n)_n\in \ell^\infty$ and define $$T:\ell^2\rightarrow \ell^2: (x_n)\mapsto (a_nx_n)$$ Assume that $a_n\rightarrow 0$. I want to check if there exists a sequence $T_n$ such that $T_n\rightarrow T$
My guess would be $T_n((x_n)_n)=(a_1x_1,...,a_nx_n,0,0,.....)$ then $$\begin{align}\|T_n-T\|^2&=\sup_{\|x\|_2\leq 1}\sum_{k>n} |a_kx_k|^2\\&\leq \sup_{\|x\|_2\leq 1}\|x\|_2^2\sup_{k>n}|a_k| \\&\leq \sup_{k>n}|a_k|\rightarrow 0 \end{align}$$
Is this correct or am I doing something wrong?