2

$$\int_0^1 \frac{\operatorname{Li}_2(-x)\operatorname{Li}_2(x)}{x}\,\mathrm dx=?$$

where $$\operatorname{Li}_2(-x)=\sum_{k=1}^{\infty}\frac{(-x)^k}{k^2}$$ for $$|x|>1$$

actually my goal is to edit the problem i had while solving

$$\sum_{n=1}^{\infty} \frac{1}{n^4}\left(\frac{1}{n}-\frac{1}{n+1}+\frac{1}{n+2}-\cdots\right)=\sum_{n=1}^{\infty}\frac{1}{n^4}\int_0^1\frac{x^{n-1}}{1+x}\,\mathrm dx$$ $$=\int_0^1\frac{1}{x(1+x)}\left(\sum_{n=1}^{\infty}\frac{x^n}{n^4}\right)\,\mathrm dx$$ $$=\int_0^1\frac{\operatorname{Li}_4(x)}{x(1+x)}\,\mathrm dx=\int_0^1\frac{\operatorname{Li}_4(x)}{x}\,\mathrm dx-\int_0^1\frac{\operatorname{Li}_4(x)}{1+x}\,\mathrm dx$$

here $$\int_0^1\frac{\operatorname{Li}_4(x)}{x}\,\mathrm dx=\zeta(5)$$ but $$\int_0^1\frac{\operatorname{Li}_4(x)}{1+x}\,\mathrm dx=?$$

When I apply partial integration, the integral I asked comes out.

Gary
  • 31,845

1 Answers1

2

Here is a generalization: \begin{gather*} \int_0^1\frac{\operatorname{Li}_{2a}(x)}{1+x}\mathrm{d}x=\int_0^1\frac{\operatorname{Li}_{2a}(x)}{x}\mathrm{d}x-\int_0^1\frac{\operatorname{Li}_{2a}(x)}{x(1+x)}\mathrm{d}x\\ =\operatorname{Li}_{2a+1}(x)|_0^1-\int_0^1\frac{1}{1+x}\left(\frac{-1}{(2a-1)!}\int_0^1\frac{\ln^{2a-1}(y)}{1-xy}\mathrm{d}y\right)\mathrm{d}x\\ =\operatorname{Li}_{2a+1}(1)+\frac{1}{(2a-1)!}\int_0^1\ln^{2a-1}(y)\left(\int_0^1\frac{\mathrm{d}x}{(1+x)(1-yx)}\right)\mathrm{d}y\\ =\zeta(2a+1)+\frac{1}{(2a-1)!}\int_0^1\ln^{2a-1}(y)\left(\frac{\ln(2)-\ln(1-y)}{1+y}\right)\mathrm{d}y\\ =\zeta(2a+1)+\frac{\ln(2)}{(2a-1)!}\int_0^1\frac{\ln^{2a-1}(y)}{1+y}\mathrm{d}y\\ -\frac{1}{(2a-1)!}\int_0^1\frac{\ln^{2a-1}(y)\ln(1-y)}{1+y}\mathrm{d}y. \end{gather*}

Substitute

$$\int_0^1\frac{\ln^a(x)}{1+x}\mathrm{d}x=(-1)^aa!\,(1-2^{-a})\zeta(a+1)$$

and

\begin{gather*} \int_0^1\frac{\ln^{2q-1}(x)\ln(1-x)}{1+x}\mathrm{d}x=(2^{1-2q}-2)(2q-1)!\ln(2)\zeta(2q)\\ +[q-2^{-1-2q}(1+2q-2^{1+2q})](2q-1)!\,\zeta(2q+1)\\ -(2q-1)!\sum_{k=1}^{q-1}(1-2^{2k-2q})\zeta(2k)\zeta(2q-2k+1), \end{gather*}

we get

\begin{gather*} \int_0^1\frac{\operatorname{Li}_{2a}(x)}{1+x}\mathrm{d}x=[1-a+2^{-1-2a}(2a+1-2^{1+2a})]\zeta(2a+1)\nonumber\\ +\ln(2)\zeta(2a)+\sum_{k=1}^{a-1}(1-2^{2k-2a})\zeta(2k)\zeta(2a-2k+1). \end{gather*}


Examples \begin{gather} \int_0^1\frac{\operatorname{Li}_{2}(x)}{1+x}\mathrm{d}x=\ln(2)\zeta(2)-\frac58\zeta(3);\\ \int_0^1\frac{\operatorname{Li}_{4}(x)}{1+x}\mathrm{d}x=\ln(2)\zeta(4)+\frac34\zeta(2)\zeta(3)-\frac{59}{32}\zeta(5)\label{int_0^1 Li_4(x)/(1+x)};\\ \int_0^1\frac{\operatorname{Li}_{6}(x)}{1+x}\mathrm{d}x=\ln(2)\zeta(6)+\frac34\zeta(3)\zeta(4)+\frac{15}{16}\zeta(2)\zeta(5)-\frac{377}{128}\zeta(7). \end{gather}


About your main integral:

$$\int_0^1\frac{\operatorname{Li}_{2}(-x)\operatorname{Li}_{2}(x)}{x}\mathrm{d}x=\sum_{n=1}^\infty\frac{(-1)^n}{n^2}\int_0^1 x^{n-1}\operatorname{Li}_{2}(x)\mathrm{d}x$$

$$=\sum_{n=1}^\infty\frac{(-1)^n}{n^2}\left(\frac{\zeta(2)}{n}-\frac{H_n}{n^2}\right)$$

$$=-\frac34\zeta(2)\zeta(3)-\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}$$

and this sum is well known.

Ali Shadhar
  • 25,498