Expressing the inverse of $$y=\frac{W_{-1}(x)}{W_0(x)}$$seems to be of very little hope.
However, using the very first term of each series expansion, for a very first estimate
$$y \sim \frac {\log(-x)} x \qquad\implies\qquad x_0=-\frac{W(y)}{y}$$
Consider that you look for the zero of
$$f(x)=\frac{W_{-1}(x)}{W_0(x)}-y$$
$$f'(x)=\frac 1 x\,\frac{W_{-1}(x)}{ W(x)} \left(\frac{1}{W_{-1}(x)+1}-\frac{1}{W(x)+1}\right)$$ and use one single iteration of Newton method
$$x_1=x_0- \frac {f(x_0)} {f'(x_0)}$$ is fully explicit (even if the formula is quite messy).
What is interesting to notice is that, for any $y \geq 5$
$$f(x_0) \times f''(x_0)~~>~0$$ So, by Darboux theorem, there will not be any overshoot of the solution during Newton iterations.
Trying for $y=10^{k}$, a few results
$$\left(
\begin{array}{cccc}
k & x_0 & x_1 & \text{solution} \\
1 & -1.74553\times 10^{-1} & -1.94877\times 10^{-1} &
-1.98090\times 10^{-1} \\
2 & -3.38563\times 10^{-2} & -4.16932\times 10^{-2} &
-4.44026\times 10^{-2} \\
3 & -5.24960\times 10^{-3} & -6.46451\times 10^{-3} &
-6.86702\times 10^{-3} \\
4 & -7.23185\times 10^{-4} & -8.76201\times 10^{-4} &
-9.20278\times 10^{-4} \\
5 & -9.28457\times 10^{-5} & -1.10651\times 10^{-4} &
-1.15117\times 10^{-4} \\
6 & -1.13834\times 10^{-5} & -1.33739\times 10^{-5} &
-1.38153\times 10^{-5} \\
7 & -1.35143\times 10^{-6} & -1.56861\times 10^{-6} &
-1.61181\times 10^{-6} \\
8 & -1.56690\times 10^{-7} & -1.79998\times 10^{-7} &
-1.84207\times 10^{-7} \\
9 & -1.78417\times 10^{-8} & -2.03139\times 10^{-8} &
-2.07233\times 10^{-8} \\
10 & -2.00287\times 10^{-9} & -2.26281\times 10^{-9} &
-2.30259\times 10^{-9} \\
\end{array}
\right)$$
The second iteration of Newton method would give a more than decent result.
To still obtain explicit, more and more accurate approximations, use one single step of Halley or Householder (or even higher order methods which do not bear any name).
Below are the same results as above for Halley method
$$\left(
\begin{array}{cccc}
k & x_0 & x_1 & \text{solution} \\
1 & -1.74553\times 10^{-1} & -1.98060\times 10^{-1} &
-1.98090\times 10^{-1} \\
2 & -3.38563\times 10^{-2} & -4.43629\times 10^{-2} &
-4.44026\times 10^{-2} \\
3 & -5.24960\times 10^{-3} & -6.86329\times 10^{-3} &
-6.86702\times 10^{-3} \\
4 & -7.23185\times 10^{-4} & -9.20015\times 10^{-4} &
-9.20278\times 10^{-4} \\
5 & -9.28457\times 10^{-5} & -1.15099\times 10^{-4} &
-1.15117\times 10^{-4} \\
6 & -1.13834\times 10^{-5} & -1.38140\times 10^{-5} &
-1.38153\times 10^{-5} \\
7 & -1.35143\times 10^{-6} & -1.61171\times 10^{-6} &
-1.61181\times 10^{-6} \\
8 & -1.56690\times 10^{-7} & -1.84199\times 10^{-7} &
-1.84207\times 10^{-7} \\
9 & -1.78417\times 10^{-8} & -2.07227\times 10^{-8} &
-2.07233\times 10^{-8} \\
10 & -2.00287\times 10^{-9} & -2.30254\times 10^{-9} &
-2.30259\times 10^{-9} \\
\end{array}
\right)$$