For $f(x)=\sum\limits_{n=1}^{\infty}nxe^{-nx^2}$, evaluate $\int\limits_{-1}^{1}f(x)\, dx$
What I have done:
for every $x \in \mathbb{R}, $ series is uniformly convergent. So we have $$\int\limits_{-1}^{1}f(x)\, dx=\int\limits_{-1}^{1}\sum\limits_{n=1}^{\infty}nxe^{-nx^2}=\sum\limits_{n=1}^{\infty}\int\limits_{-1}^{1}nxe^{-nx^2}=0$$
If this approach is not OK please let know. For the alternative way, please give me a hint.