I posted an answer in this question to prove that $(\sqrt8)^{\sqrt 7}<(\sqrt7)^{\sqrt 8}$
I started with
$$f(x)=\frac{\ln x}{x}$$
$$f'(x)=\frac{1-\ln x}{x^2}$$
$$f'(x)>0 : x\in)0,e($$ $$f'(x)<0 : x\in)e,+\infty($$
so $f(1/7)>f(1/8)$, hence $-8\ln 8<-7\ln7$
so
$$\begin{align} 8\ln 8 & > 7\ln7\\\\ 0.5\cdot 8\ln 8 & >0.5\cdot 7\ln7\\\\ 8\ln \sqrt8 & > 7\ln\sqrt7\\\\ \ln (\sqrt8)^{\sqrt 7}& >\ln(\sqrt7)^{\sqrt 8}\\\\ (\sqrt8)^{\sqrt 7} &>(\sqrt7)^{\sqrt 8} \end{align}$$
but where is the mistake with my answer, because $(\sqrt8)^{\sqrt 7}<(\sqrt7)^{\sqrt 8}$?!