-2

Some month ago and after several attempt to find it I have :

Let $y\geq 1$

$$e^{y}\overset{?}{=}\lim_{x \to 0^+}\left(\left|1-\frac{y-1+x!}{1-\frac{1}{1-x!x!!x!!!x!!!!x!!!!!\cdot\cdot\cdot}}\right|\right)^{\frac{1}{x}}$$

Where we have the composition of Gamma function ($x!!=\Gamma(\Gamma(x+1)+1)$)

As Robjohn answered a previous question Conjecture: $\lim\limits_{x\to 0}(x!\,x!!\,x!!!\,x!!!!\cdots )^{-1/x}\stackrel?=e$ .I have tried the same path without any success .

If true might be this equality have some nice application .

Also I wondering myself if it could be true if $y$ is a complex number .

Some matter :

It seems there is again the binomial coefficient which appears .

Let :

$$f_n(x)=\left(\left|1-\frac{y-1+x!}{1-\frac{1}{1-x!x!!x!!!x!!!!x!!!!!...x!!!...!}}\right|\right)^{\frac{1}{x}}$$

Where we have composing $n$ times the Gamma function with itself .

Then it seems we have :

$$\lim_{x\to 0^+}f_n(x)=e^{y(1-(1-\gamma)^n)}$$

As attempt we can try to use log as the limit is also :

$$\lim_{x\to 0^+}\frac{\ln\left(1-\frac{\left(y-1+x!\right)}{1-\frac{1}{1-x!x!!x!!!\cdot\cdot\cdot}}\right)}{x}=y$$

And then use the linked question with Robjohn's answer.The fraction form can be simplified .

Edit 24/01/2023 :

There is another way if :

$$\lim_{x \to 0^+}\left(\left|1-\frac{y-1+x!}{1-\frac{1}{1-x!x!!x!!!x!!!!x!!!!!\cdot\cdot\cdot}}\right|\right)^{\frac{1}{x}}=\lim_{x \to 0^+}\left(\left|1-\frac{y-1+x!x!!x!!!x!!!!x!!!!!\cdot\cdot\cdot}{1-\frac{1}{1-x!x!!x!!!x!!!!x!!!!!\cdot\cdot\cdot}}\right|\right)^{\frac{1}{x}}$$

Then we can write :

$$\lim_{x \to 0^+}\left|g(x!x!!x!!!x!!!!x!!!!!\cdot\cdot\cdot)\right|^{\frac{1}{x}}\overset{?}{=} e^y$$

Where :

$$g(x)=1-\frac{y-1+x}{1-\frac{1}{1-x}}=\frac{y-1}{x}-x-y+3$$

How to (dis)prove it ?

1 Answers1

1

Using the answer @Robjohn and the edit 24/01/2023 we have :

$$\lim_{x \to 0^+}\left|g(x!x!!x!!!x!!!!x!!!!!\cdot\cdot\cdot)\right|^{\frac{1}{x}}=\lim_{x \to 0^+}\left(g\left(1-x\right)\right)^{\frac{1}{x}}=e^y$$

Where :

$$g(x)=1-\frac{y-1+x}{1-\frac{1}{1-x}}=\frac{y-1}{x}-x-y+3$$