I need to prove that $\gcd(a,a+b) = \gcd(a,b)$ in order to prove that two successive fibonacci numbers are coprime. I want to use Bezout's Identity, would this be correct?
Let $ \gcd(a, a+b) = x \ ,$ by Bezout's identity we have: $$ \ ma \ + n(a+b) = x$$ $$(m+n) a + bn = x$$ Now we can say that, at least, $\ x$ divides $a$ and $b$, so $\gcd(a,b) \ge x = \gcd(a,a+b).$
Suppose now that $d = \gcd(a,b) > x = \gcd(a,a+b) $, then we have: $$a = d\lambda_1,\quad b= d\lambda_2$$ Hence: $$\gcd(a,a+b) = \gcd (d\lambda_1, d\lambda_1 +d\lambda_2 ) = d \cdot \gcd(\lambda_1, \lambda_1+ \lambda_2)$$
And because $\gcd(\lambda_1, \lambda_1+\lambda_2) \ge 1$ we get that $d = \gcd(a,b) \gt d \cdot \gcd(\lambda_1,\lambda_1+ \lambda_2)$, a contradiction.
So $\gcd(a,a+b) = \gcd(a,b)$.