-1

Is matrix

$$\mathbf{B}=\mathbf{A}\mathbf{A}^T$$

necessarily symmetric (i.e., does $\mathbf{B}=\mathbf{B}^T$)?

Writing $$b_{ij}=a_{ij}a_{ji}$$ seems wrong because the $j$ on the LHS is different from the repeated/summed $j$ on the RHS. I'm not sure where to proceed in the proof or disproof from here.

I don't know how to proceed from here, either: $$\mathbf{B}^T=\left(\mathbf{A}\mathbf{A}^T\right)^T.$$

Geremia
  • 2,405

2 Answers2

3

Yes.

$$\mathbf{B}^T=\left(\mathbf{A}\mathbf{A}^T\right)^T=\mathbf{A}\mathbf{A}^T=\mathbf{B},$$ from the fact $(\mathbf{A}\mathbf{B})^T=\mathbf{B}^T\mathbf{A}^T$ and $(\mathbf{A}^T)^T=\mathbf{A}$.

Q.E.D.

Geremia
  • 2,405
3

You can prove this with sums as well: Note that

$$b_{ij} = \sum_{k = 1}^n a_{ik}a_{jk} $$

and

$$ b_{ji} = \sum_{k = 1}^n a_{jk}a_{ik} $$

where the second factor in each summand uses that $(a_{ij})^T = a_{ji}.$ The sums are equal, and hence $B$ is symmetric.