Let $(X, d)$ be a metric space. For a subset $A$ of $X$, let $d_A(x) := \inf_{a \in A} d(x, a)$. Let $x,y \in X$. For $b \in A$, we have $$ d_A(x) -d(y, b) = \inf_{a \in A} (d(x, a) - d(y, b)) \le d(x,b)-d(y,b) \le d(x,y). $$
So $d_A(x) -d_A(y) \le d(x,y)$. By symmetry, $|d_A(x) -d_A(y)| \le d(x,y)$ and thus the map $x \mapsto d_A(x)$ is $1$-Lipschitz. In proving this result, I have come across below theorem, i.e.,
Theorem Let $A,B$ be two closed subsets of $X$ such that $A$ is compact and $A \cap B = \emptyset$. Then the map $f:X \to \mathbb R$ defined by $$ f(x) := \frac{d_A(x)}{d_A(x)+d_B(x)} \quad \forall x\in X. $$ is Lipschitz such that $f(A)=1$ and $f(B)=0$.
Could you have a check on my below attempt?
Proof It's clear that $f(A)=1$ and $f(B)=0$. Notice that $d_A(x)+d_B(x) \ge d(A,B) := \inf\{d(a,b) : a\in A, b\in B\}>0$ because $A$ is compact, $B$ is closed, and $A \cap B = \emptyset$. Fix $x,y\in X$. Then $$ \begin{align} |f(x)-f(y)| &= \left | \frac{d_A(x)}{d_A(x)+d_B(x)} - \frac{d_A(y)}{d_A(y)+d_B(y)} \right | \\ &= \frac{|d_A(x) d_B(y) - d_A(y) d_B(x)|}{[d_A(x)+d_B(x)][d_A(y)+d_B(y)]} \\ &= \frac{|d_A(x) [d_B(y)-d_B(x)] + d_B(x) [d_A(x)-d_A(y)]|}{[d_A(x)+d_B(x)][d_A(y)+d_B(y)]} \\ &\le \frac{d_A(x) |d_B(y)-d_B(x)| }{[d_A(x)+d_B(x)][d_A(y)+d_B(y)]} + \frac{d_B(x) | d_A(x)-d_A(y)|}{[d_A(x)+d_B(x)][d_A(y)+d_B(y)]} \\ &\le \frac{d_A(x) d(x,y) }{[d_A(x)+d_B(x)][d_A(y)+d_B(y)]} + \frac{d_B(x) d(x,y)}{[d_A(x)+d_B(x)][d_A(y)+d_B(y)]} \\ &\le \frac{d(x,y) }{d_A(y)+d_B(y)} + \frac{d(x,y)}{d_A(y)+d_B(y)} \\ &\le \frac{2d(x,y) }{d(A,B)} . \end{align} $$
This completes the proof.