In
A strange integral: $\int_{-\infty}^{+\infty} {dx \over 1 + \left(x + \tan x\right)^2} = \pi.$
@robjohn posts that:
$$\int_{—\infty}^\infty f(g(x))dx=\int_{-\infty}^\infty \sum_{g(x)=a}\frac{f(a)}{|g’(x)|} da$$
Denote $g(a_n)=a$ with $j$ roots:
$$\int_{-\infty}^\infty \sum_{g(x)=a}\frac{f(a)}{|g’(x)|} da=\int_{-\infty}^\infty \sum_{x=a_n}\frac{f(a)}{|g’(x)|}da=\int_{-\infty}^\infty \sum_n\frac{f(a)}{|g’(a_n)|}da=\left(\frac1{|g’(a_1)|}+\dots+\frac1{|g’(a_j)|}\right)\int_{-\infty}^\infty f(a)da$$
Is this correct or how do you write out the sum?