Solve the linear system
$ \begin{array}{ c c c c c c c c c c c c c c } & & x_{2} & + & x_{3} & + & \dotsc & + & x_{n-1} & + & x_{n} & = & 2 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( 1)\\ x_{1} & & & + & x_{3} & + & \dotsc & + & x_{n-1} & + & x_{n} & = & 4 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( 2)\\ x_{1} & + & x_{2} & & & + & \dotsc & + & x_{n-1} & + & x_{n} & = & 6 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( 3)\\ \vdots & & \vdots & & \vdots & & \ddots & & \vdots & & \vdots & & \vdots & \ \ \ \ \ \ \ \ \ \ \ \\ x_{1} & + & x_{2} & + & x_{3} & + & \dotsc & + & x_{n-1} & & & = & 2n & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( n) \end{array} $
Attempt
I am not confident yet with my linear algebra, so I tried approaching this problem by adding all of the equations, which gives us
$ \begin{align*} (n-1)(x_1+x_2+x_3+\ldots+x_{n-1}+x_n)=2+4+6+\ldots+2n \tag*{} \end{align*} $
since $x_i$ ($i \in \mathbb{N}, i \leq n$) always appear in every equation except the $i$-th equation. The right-hand side is the sum of first $n$ positive even number, which can be simplified further as
$ \begin{align*} (n-1)(x_1+x_2+x_3+\ldots+x_{n-1}+x_n) &= n(n+1) \\[.5em] x_1+x_2+x_3+\ldots+x_{n-1}+x_n &= \dfrac{n(n+1)}{n-1} \tag*{} \end{align*} $
Subtracting respectively Eq. (1), Eq. (2), up to Eq. (n) from Eq. (A), gives us
$
\begin{align*}
x_1 &= \dfrac{n(n+1)}{n-1} - 2 = \dfrac{n(n+1) - 2(n-1)}{n-1} = \dfrac{n^2 - n + 2}{n-1} \tag*{}\\
x_2 &= \dfrac{n(n+1)}{n-1} - 4 = \dfrac{n(n+1) - 4(n-1)}{n-1} = \dfrac{n^2 - 3n + 4}{n-1} \\
\vdots \\
x_n &= \dfrac{n(n+1)}{n-1} - 2n = \dfrac{n(n+1) - 2n(n-1)}{n-1} = \dfrac{3n-n^2}{n-1}
\end{align*}
$
However, I'm rather concerned with the denominator ($n-1$) which causes division by zero when $n = 1$. Did I do a mistake, or maybe did I misunderstand something in the process? And what would be the correct approach to this problem? Thanks.
Note: I found the problem here.