Let's first put aside some technical details like magnitudes and normalization and all that. You basically have A, N, and the angle between A and B. In other words, you have $\vec{a}$, $\vec{a}\times \vec{b}=\vec{n}, \vec{a}\cdot \vec{b}=d$ (say), and you want to find $\vec{b}$. This is what your situation essentially boils down to.
Note that $\vec{a}\times\vec{b}=\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix}\times\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}=\begin{pmatrix}a_2b_3-a_3b_2\\a_3b_1-a_1b_3\\a_1b_2-a_2b_1\end{pmatrix}=\begin{pmatrix}0&-a_3&a_2\\a_3&0&-a_1\\-a_2&a_1&0\end{pmatrix}\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}=\begin{pmatrix}n_1\\n_2\\n_3\end{pmatrix}\\=\vec{\vec{A}}\vec{b}=\vec{n}$,
where $\vec{\vec{A}}$ is that antisymmetric matrix that we made using components of $\vec{a}$ (and $\vec{n}$ is known to us). The reason we can't find $\vec{b}$ right away here is because $\det|\vec{\vec{A}}|=0$, so it's non-invertible. There is no unique solution, there are infinitely many $\vec{b}$'s that satisfy this equation.
However, we also have some extra information in the form $\vec{a}\cdot\vec{b}=d$, or, $a_1b_1+a_2b_2+a_3b_3=d$, which gives us enough to be able to pin down $\vec{b}$ uniquely. This condition can be expressed in matrix form as $\vec{\vec{C}}\vec{b}=\vec{d}$, where
$\vec{\vec{C}}=\begin{pmatrix}a_1&a_2&a_3\\a_1&a_2&a_3\\a_1&a_2&a_3\end{pmatrix},~\vec{d}=\begin{pmatrix}d\\d\\d\end{pmatrix}$
Now, we can combine our two pieces of info (matrix equations) together! Let's try adding them, plain and simple: $(\vec{\vec{A}}+\vec{\vec{C}})\,\vec{b}=(\vec{n}+\vec{d})$
Since $\vec{\vec{A}}+\vec{\vec{C}}$ is invertible (you can verify that its determinant is nonzero), this equation can be solved the usual way: $\vec{b}=(\vec{\vec{A}}+\vec{\vec{C}})^{-1}(\vec{n}+\vec{d})$, which expands to $\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}=\begin{pmatrix}a_1&a_2-a_3&a_2+a_3\\a_3+a_1&a_2&a_3-a_1\\a_1-a_2&a_1+a_2&a_3\end{pmatrix}^{-1}\begin{pmatrix}n_1+d\\n_2+d\\n_3+d\end{pmatrix}$
Ta-daa!