I have trouble calculating the following definite integral $$\int_{0}^{\pi / 2} \frac{\sin x \cos x}{1 + \sqrt{\tan x}} \text{d}x.$$ I tried to get the primitive function by $t = \tan \dfrac{x}{2}$ but it seemed that it is too complicated.
2 Answers
Expanding on @stochasticboy321's comment, you get $$ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(x)\cos(x)}{1+\sqrt{\tan(x)}}\mathrm{d}x + \underbrace{\int_{0}^{\frac{\pi}{2}} \frac{\cos(u)\sin(u)}{1+\sqrt{\cot(u)}}\mathrm{d}u}_{\color{darkblue}{u = \frac{\pi}{2}-x}} = \int_{0}^{\frac{\pi}{2}} \sin(x)\cos(x) \mathrm{d}x = \frac{1}{2}\int_{0}^{\frac{\pi}{2}} \sin(2x) \mathrm{d}x $$ Since $$ \frac{1}{1+\sqrt{t}} + \frac{1}{1+\sqrt{\frac{1}{t}}} = \frac{1}{1+\sqrt{t}} + \frac{\sqrt{t}}{\sqrt{t}+1} = \frac{1+\sqrt{t}}{1+\sqrt{t}}=1 $$

- 7,233
Let $\tan x=u^2$ then $$I=\int_0^{\frac{\pi}{2}}\frac{\sin x\cos x}{1+\sqrt{\tan x}}=\int_0^{\infty}\frac{2u^3}{(u+1)(u^4+1)^2}du$$ We can still do a similar trick. It is not too late. Let $u\rightarrow 1/u$ in the last integral, then, $$I=\int_0^{\infty}\frac{2u^4}{(u+1)(u^4+1)^2}du$$ and hence $$I=\frac{1}{2}\int_0^{\infty}\frac{2u^3+2u^4}{(u+1)(u^4+1)^2}du=\int_0^{\infty}\frac{u^3}{(u^4+1)^2}du=\left.-\frac{1}{4(u^4+1)}\right\rvert_0^{\infty}=\frac{1}{4}.$$

- 10,988
Integrate[Sin[x]*Cos[x]/(1 + Sqrt[Tan[x]]), {x, 0, Pi/2}]
$\frac{1}{4}$ – 138 Aspen Jan 06 '23 at 11:25