Any number not divisible by 2 and not divisible by 3 is in the form: $6k\pm1, \quad k \in \mathbb N$
If I have the following:
$$ p = 6a+b, \qquad a \in \mathbb N, \quad b \in \{-1,1\} $$ $$ q = 6c+d, \qquad c \in \mathbb N, \quad d \in \{-1,1\} $$ $$ n = p \cdot q $$ $$ x = \frac{p+q}{2} $$ $$ y = \frac{q-p}{2} $$ Then: $$ \left(\frac{n+1}{2}\right)^2-x^2=\left(\frac{n-1}{2}\right)^2-y^2=z \qquad \land \qquad \left(\frac{n+1}{2}\right)^2 - \left(\frac{n-1}{2}\right)^2 = n $$ Moreover, for any number $n$ in the form $6k\pm1$, $z$ seems to be divisible by 144. I want to prove that $z$ is divisible by 144.
I will try to probe only one case because there are too many cases.
Supose: $$ \left(\frac{n+1}{2}\right)^2-\left(\frac{p+q}{2}\right)^2 \to \left(\frac{p \cdot q + 1}{2}\right)^2-\left(\frac{p+q}{2}\right)^2 $$ Replacing $p$ and $q$: $$ \left(\frac{\left(6a+b\right)\left(6c+d\right)+1}{2}\right)^{2}-\left(\frac{\left(6a+b\right)+\left(6c+d\right)}{2}\right)^{2} = \left(\frac{36ac+6ad+6bc+bd+1}{2}\right)^{2}-\left(\frac{6a+6c+b+d}{2}\right)^{2} $$ Assuming that $b$ and $d$ are opposite and: $$ b = 1, \quad d = -1 \to \left(\frac{36ac-6a+6c}{2}\right)^{2}-\left(\frac{6a+6c}{2}\right)^{2} $$ Operating and taking common factors: $$ \left(3\left(6ac+c-a\right)\right)^{2}-\left(3\left(a+c\right)\right)^{2} = 9\left(\left(6ac+c-a\right)^{2}-\left(a+c\right)^{2}\right) = $$ $$ = 9\left(36a^{2}c^{2}+12\left(c-a\right)ac+\left(c-a\right)^{2}-\left(a+c\right)^{2}\right) = 9\left(36a^{2}c^{2}+12ac^{2}-12a^{2}c-4ac\right) = $$ $$ 9\cdot4\cdot ac\left(9ac+3c-3a-1\right) $$ If $a$ is even and $c$ is odd: $$ a = 2i, \quad c = 2j - 1 \to 9\cdot4\cdot\left(2i\right)\left(2j-1\right)\left(9\left(2i\right)\left(2j-1\right)+3\left(2j-1\right)-3\left(2i\right)-1\right) = $$
Operating and taking common factors: $$ = 9\cdot4\cdot\left(4ij-2i\right)\left(\left(18i\right)\left(2j-1\right)+\left(6j-3\right)-\left(6i\right)-1\right) = $$
$$ = 9\cdot4\cdot\left(4ij-2i\right)\left(36ij-18i+6j-6i-4\right) = $$
$$ = 9\cdot4\cdot2\cdot2\left(2ij-i\right)\left(18ij-9i+3j-3i-2\right) \to 9\cdot4\cdot2\cdot2 = 144 $$
Finally: $z$ is divisible by 144 and $144 = 12^2$
These means solving these equations: $$ x^2 \equiv \left(\frac{n+1}{2}\right)^2 (\textrm{mod}\ 144) \quad \land \quad y^2 \equiv \left(\frac{n-1}{2}\right)^2 (\textrm{mod}\ 144) $$
You can factorize integer number. But for large integer numbers these method don't work.
So:
Taking any assumptions on $a$, $b$, $c$ or $d$ values or any other assumption always gives that $z$ is divisible by 144. I can't develop a demonstration on all cases. With this I didn't prove anything. I can't refute it either.
Is there an easy way to probe this?
And if this is true, is possible to extend it to factor larger numbers?