There are clear proofs of the result that $\langle a^m\rangle\cap \langle a^n \rangle=\langle a^{\text{lcm}(n,m)}\rangle$ here, but I'm wondering if the following proof is correct since it avoids any reference to the order of $\langle a \rangle$ or the notion of $\text{ lcm}(\gcd(k,m),\gcd(k,n))$.
Proof:
Let $s=\text{lcm}(m,n)$. Then for some $t_0,t_1\in\mathbb{Z}$ we have $s=mt_0$ and $s=nt_1$. Thus if $g\in\langle a^s\rangle$, then $g=(a^s)^t$ for some $t\in\mathbb{Z}$ so that $$g=(a^s)^t=(a^{mt_0})^t=(a^m)^{tt_0}\in\langle a^m\rangle$$ and $$g=(a^s)^t=(a^n)^{tt_1}\in\langle a^n\rangle$$ therefore $g\in\langle a^m\rangle\cap \langle a^n \rangle$.
On the other hand, if $g=a^r\in\langle a^m\rangle\cap \langle a^n \rangle$, then $m$ and $n$ divide $r$ so that $\text{lcm}(m,n)$ divides $r\implies g=a^r\in\langle a^s\rangle$.
Hence $\langle a^m\rangle\cap \langle a^n \rangle=\langle a^s \rangle =\langle a^{\text{lcm}(n,m)}\rangle$. $\blacksquare$
I'm a little concerned because this proof does not seem to invoke the order of $\langle a \rangle$, and when I compute these groups assuming finiteness I first reduce the powers $a^m$ and $a^n$ via the G.C.D. of the powers of $a$ and the order of $a$ so that $\langle a^m \rangle \cap \langle a^n \rangle = \langle a^{\gcd(|a|,m)} \rangle \cap \langle a^{\gcd(|a|,n)} \rangle$, and then compute $$\langle a^{\gcd(|a|,m)} \rangle \cap \langle a^{\gcd(|a|,n)} \rangle=\langle a^{\text{lcm}(\gcd(|a|,m),\gcd(|a|,n))\text{mod}(|a|)}\rangle $$
so that we have $$\langle a^m \rangle \cap \langle a^n \rangle=\langle a^{\text{lcm}(\gcd(|a|,m),\gcd(|a|,n))\text{mod}(|a|)}\rangle.$$
How can this all be suppressed in the proof I gave above?