Surprised that no one gave you a complete answer. Your posting clearly showed work.
Your method of indexing seems unnatural to me. Of the $~\displaystyle \binom{n}{3}~$ pertinent unordered triples, I will assume that $i > j > k$. So, you have ordered triples of the form $(i,j,k).$
This means that :
- $i$ can run from $3$ through $n$, inclusive.
- For any value of $i$, you have that $j$ can run from $2$ through $(i-1)$ inclusive.
- For any value of $j$, you have that $k$ can run from $1$ through $(j-1)$ inclusive.
Tools:
$~\displaystyle \sum_{r=1}^s r = \frac{s^2}{2} + \frac{s}{2} ~: ~s \in \Bbb{Z^+}.$
$~\displaystyle \sum_{r=1}^s r^2 = \frac{s^3}{3} + \frac{s^2}{2} + \frac{s}{6} ~: ~s \in \Bbb{Z^+}.$
$~\displaystyle \sum_{r=1}^s r^3 = \frac{s^4}{4} + \frac{s^3}{2} + \frac{s^2}{4} ~: ~s \in \Bbb{Z^+}.$
$~\displaystyle \sum_{r=1}^s r^4 = \frac{s^5}{5} + \frac{s^4}{2} + \frac{s^3}{3} - \frac{s}{30}~: ~s \in \Bbb{Z^+}.$
$~\displaystyle \sum_{r=1}^s r^5 = \frac{s^6}{6} + \frac{s^5}{2} + \frac{5s^4}{12} - \frac{s^2}{12}~: ~s \in \Bbb{Z^+}.$
For what it's worth, the above formulas may be derived using nothing more than Algebra, Mathematical Induction, and a basic knowledge of Pascal's Triangle. This means that the derivation can avoid Bernoulli Numbers, Calculus, or Faulhaber's formula.
See, for example, this answer.
Let $f(i,j)$ denote the sum of the products of the pertinent ordered triples, where $i > j$, and where $k$ runs from $1$ through $(j-1).$
That is, $~\displaystyle f(i,j) = \sum_{k=1}^{j-1} i \times j \times k ~: i \in \{3,4,\cdots,n\}, ~j \in \{2,3,\cdots,i-1\}.$
Let $g(i)$ denote $~\displaystyle \sum_{j=2}^{i-1} f(i,j).$
Let $H$ denote $~\displaystyle \sum_{i=3}^n g(i).$
Then, the goal is to calculate $H$.
For $i,j$ fixed,
$$f(i,j) = [i \times j] \times \sum_{k=1}^{j-1} k$$
$$= [i \times j] \times \frac{(j-1)^2}{2} + \frac{j-1}{2}$$
$$= [i \times j] \times \frac{1}{2} \times \left[ ~\left(j^2 - 2j + 1 ~\right) + (j - 1) ~\right]$$
$$= [i \times j] \times \frac{1}{2} \times \left[ ~j^2 - j ~\right]$$
$$\frac{i}{2} \times \left( ~j^3 - j^2 ~\right).$$
For $i$ fixed:
$$g(i) = \sum_{j=2}^{i-1} f(i,j) = \sum_{j=2}^{i-1} \left[ ~\frac{i}{2} \times \left( ~j^3 - j^2 ~\right) ~\right].$$
There is a mild shortcut here. Note that when $j=1$, the expression $(j^3 - j^2) = 0.$
Therefore,
$$g(i) = \sum_{j=1}^{i-1} \left[ ~\frac{i}{2} \times \left( ~j^3 - j^2 ~\right) ~\right]$$
$$ = \frac{i}{2} \times \sum_{j=1}^{i-1} ~j^3 \\
- \frac{i}{2} \times \sum_{j=1}^{i-1} ~j^2$$
$$= \frac{i}{2} \times ~\left[ ~\frac{(i-1)^4}{4} + \frac{(i-1)^3}{2} + \frac{(i-1)^2}{4} ~\right] \\
- \frac{i}{2} ~\left[ ~\frac{(i-1)^3}{3} + \frac{(i-1)^2}{2} + \frac{(i-1)}{6} ~\right]$$
$$= \frac{i}{2} \times ~\left[ ~\frac{(i-1)^4}{4} + \frac{(i-1)^3}{6} - \frac{(i-1)^2}{4} - \frac{i-1}{6} ~\right] $$
$$= \frac{i}{2} \times \frac{1}{12} \times \\
\left\{ \\
~~[3i^4 - 12i^3 + 18i^2 - 12i + 3] \\
+ [ 2i^3 - 6i^2 + 6i -2] \\
- [3i^2 - 6i + 3] \\
- [2i - 2] \\
~\right\}$$
$$= \frac{1}{24} \times [3i^5 - 10i^4 + 9i^3 - 2i^2].$$
$$H = \sum_{i=3}^n g(i) = \sum_{i=1}^n g(i) - \sum_{i=1}^2 g(i).$$
Again, there is a mild shortcut here. Note that $~\displaystyle \sum_{i=1}^2 g(i) = 0.$
Therefore,
$$H = \sum_{i=1}^n g(i) \\
= \frac{1}{24} \times \sum_{i=1}^n [3i^5 - 10i^4 + 9i^3 - 2i^2] \\
= \frac{1}{24} \times \\
\left\{ \\
~~\left[\frac{n^6}{2} + \frac{3n^5}{2} + \frac{5n^4}{4} - \frac{n^2}{4}\right] \\
- \left[2n^5 + 5n^4 + \frac{10n^3}{3} - \frac{n}{3}\right] \\
+ \left[\frac{9n^4}{4} + \frac{9n^3}{2} + \frac{9n^2}{4}\right] \\
- \left[\frac{2n^3}{3} + n^2 + \frac{n}{3}\right] \\
\right\}$$
$$= \frac{1}{24} \times \left[\frac{n^6}{2} - \frac{n^5}{2} - \frac{3n^4}{2} + \frac{n^3}{2} + n^2\right].$$