The central estimate.
Let's consider the integral
$$
I(n) = \int_{-\pi/2}^{\pi/2} \exp\left[-A(y+\pi n)^8 y^2\right]\,dy,
$$
where $A > 0$ is constant. For convenience we'll define $$f_n(y) = -A(y+\pi n)^8 y^2.$$ Note that $f_n(0) = 0$ and $f_n(y) < 0$ for all $y \in [-\pi/2,\pi/2]\setminus\{0\}$ if $n \geq 1$, so that $f_n(y)$ has a maximum at the point $y=0$ and hence the largest contribution to the integral $I(n)$ comes from a neighborhood of $y=0$.
It can be shown that, for $3 \leq m \leq 10$ and $-\pi/2 \leq y \leq \pi/2$,
$$
|y|^m \leq (\pi/2)^7 |y|^3,
$$
so if we define
$$
g_n(y) = f_n(y) + A\pi^8 n^8 y^2
$$
then it follows from the triangle inequality that
$$
|g_n(y)| \leq A 9 \binom{8}{4} (\pi/2)^7 n^7 |y|^3
$$
for $-\pi/2 \leq y \leq \pi/2$. In other words,
$$
f_n(y) = -A\pi^8 n^8 y^2 + O\left(n^7 y^3\right).
\tag{1}
$$
This suggests that we should focus our attention on the interval $y \in \left[-n^{-7/3},n^{-7/3}\right]$, for in this interval we can write
$$
\exp\left[O\left(n^7 y^3\right)\right] = 1 + O\left(n^7 y^3\right).
\tag{2}
$$
The contribution from the remaining intervals is exponentially small. Indeed,
$$
\begin{align}
\int_{n^{-7/3}}^{\pi/2} \exp\left[-A(y+\pi n)^8 y^2\right]\,dy &\leq \left(\frac{\pi}{2}-n^{-7/3}\right) \exp\left[-A\left(n^{-7/3}+\pi n\right)^8 n^{-14/3}\right] \\
&< \frac{\pi}{2} \exp\left(-An^{10/3}\right),
\end{align}
$$
and similarly for $\left[-\pi/2,-n^{-7/3}\right]$. Combining this with $(1)$ and $(2)$ we have
$$
\begin{align}
I(n) &= \int_{-n^{-7/3}}^{n^{-7/3}} \exp\left[-A(y+\pi n)^8 y^2\right]\,dy + O\left(e^{-An^{10/3}}\right) \\
&= \int_{-n^{-7/3}}^{n^{-7/3}} \exp\left[-A\pi^8 n^8 y^2\right]\,dy + O\left(n^7 \int_{-n^{-7/3}}^{n^{-7/3}} |y|^3 \exp\left[-A\pi^8 n^8 y^2\right]\,dy\right) \\
&\qquad + O\left(e^{-An^{10/3}}\right). \tag{3}
\end{align}
$$
To these integrals we will add on the tails over the intervals $\left(-\infty,-n^{-7/3}\right)$ and $\left(n^{-7/3},\infty\right)$ and in doing so contribute only an exponentially small error.
We can find a constant $B$ so that $|y|^3 \leq B \exp\left[\frac{A}{2}\pi^8 n^8 y^2\right]$ for all $y$, so that
$$
\begin{align}
\int_{n^{-7/3}}^{\infty} |y|^3 \exp\left[-A\pi^8 n^8 y^2\right]\,dy &\leq B \int_{n^{-7/3}}^{\infty} \exp\left[-\frac{A}{2}\pi^8 n^8 y^2\right]\,dy \\
&= Bn^{-7/3}\int_1^\infty \exp\left[-\frac{A}{2}\pi^8 n^{10/3} z^2\right]\,dz \\
&< Bn^{-7/3}\int_1^\infty \exp\left[-\frac{A}{2}\pi^8 n^{10/3} z\right]\,dz \\
&= Bn^{-7/3}\,\frac{2\exp\left[-\frac{A}{2}\pi^8 n^{10/3}\right]}{A\pi^8 n^{10/3}} \\
&= B\,\frac{2\exp\left[-\frac{A}{2}\pi^8 n^{10/3}\right]}{A\pi^8 n^{17/3}}
\end{align}
$$
This method will also show that
$$
\int_{n^{-7/3}}^{\infty} \exp\left[-A\pi^8 n^8 y^2\right]\,dy = O\left(n^{-17/3} \exp\left[-A\pi^8 n^{10/3}\right]\right),
$$
and by symmetry these estimates also hold when integrating over the interval $\left(-\infty,-n^{-7/3}\right)$.
Thus
$$
\begin{align}
&\int_{-n^{-7/3}}^{n^{-7/3}} |y|^3 \exp\left[-A\pi^8 n^8 y^2\right]\,dy \\
&\qquad = \int_{-\infty}^\infty |y|^3 \exp\left[-A\pi^8 n^8 y^2\right]\,dy + O\left(n^{-17/3} \exp\left[-\frac{A}{2}\pi^8 n^{10/3}\right]\right) \\
&\qquad = 2\int_0^\infty y^3 \exp\left[-A\pi^8 n^8 y^2\right]\,dy + O\left(n^{-17/3} \exp\left[-\frac{A}{2}\pi^8 n^{10/3}\right]\right) \\
&\qquad = \frac{1}{A^2 \pi^{16} n^{16}} + O\left(n^{-17/3} \exp\left[-\frac{A}{2}\pi^8 n^{10/3}\right]\right)
\end{align}
$$
and
$$
\begin{align}
&\int_{-n^{-7/3}}^{n^{-7/3}} \exp\left[-A\pi^8 n^8 y^2\right]\,dy \\
&\qquad = \int_{-\infty}^{\infty} \exp\left[-A\pi^8 n^8 y^2\right]\,dy + O\left(n^{-17/3} \exp\left[-A\pi^8 n^{10/3}\right]\right) \\
&\qquad = \frac{1}{A^{1/2}\pi^{7/2} n^4} + O\left(n^{-17/3} \exp\left[-A\pi^8 n^{10/3}\right]\right).
\end{align}
$$
Combining this with $(3)$ and absorbing the superfluous exponential error terms yields
$$
I(n) = \frac{1}{A^{1/2}\pi^{7/2} n^4} + O\left(\frac{1}{n^9}\right).
$$
(For another application of this method, see this answer.)
Applying this to the problem at hand.
It remains to show that
$$
\int_{-\pi/2}^{\pi/2} (y+\pi n)^p \exp\left[-(y+\pi n)^8 y^2\right]\,dy \sim \pi^p n^p \left.I(n)\right|_{A=1}
$$
and
$$
\int_{-\pi/2}^{\pi/2} (y+\pi n)^p \exp\left[-(y+\pi n)^8 \left(\frac{y}{2}\right)^2\right]\,dy \sim \pi^p n^p \left.I(n)\right|_{A=1/4},
$$
which is left as an exercise (Hint: factor out $\pi^p n^p$ first then bound $$1-\epsilon < (1+y/\pi n)^p < 1+\epsilon$$ for $n$ large enough). We may then conclude by your estimates that $f_p \in \mathscr{L}(0,\infty)$ if $-1 < p < 3$ and $f_p \notin \mathscr{L}(0,\infty)$ if $p \geq 3$ or $p \leq -1$.