I'm reading Gortz's Algebraic Geometry Theorem 11.51 and I'm stuck trying to understand this statement:
There is an erratum: in the definition of $\mathcal{E}^{\lambda}$, we should repace $d$ by $d_i$.
Why is the underlined statement true? What does the "uniqueness of $\mathcal{E}^{\lambda}$" exactly mean?
Assume that $\bigoplus_{d_i \ge \lambda} \mathcal{O}_X(d_i) \cong \mathcal{E}^{\lambda} \cong \bigoplus_{e_i\ge \lambda}\mathcal{O}_X(e_i)$. We first show that $d_1=e_1$.
- Case 1) $d_1 > e_1$ : In this case, note that:
$$\begin{align}0&\neq\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(d_1), \mathcal{E}^{\lambda}) \\&= \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(d_1), \bigoplus_{e_i \ge \lambda}\mathcal{O}_X(e_i))\\&\overset{?}{=} \bigoplus_{e_i \ge \lambda} \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(d_1), \mathcal{O}_X(e_i))\\&=0\end{align}$$
(The last equality is true since $d_1 > e_1 \ge e_2 \ge \cdots $ )
- Case 2) $d_1 < e_1$ : In this case, similarly, note that
$$\begin{align}0& \neq \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(e_1), \mathcal{E}^{\lambda}) \\&= \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(e_1), \bigoplus_{d_i \ge \lambda}\mathcal{O}_X(d_i))\\&\overset{?}{=} \bigoplus_{d_i \ge \lambda} \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(e_1), \mathcal{O}_X(d_i))\\&=0\end{align}$$
So $d_1=e_1$. And this is a point that I stuck. How can we further show that $d_2 = e_2$, $d_3=e_3$, $\cdots$? Can anyone help?

\begin{align},\end{align}to stop the text running off the page, and when using\oversetit's advisable to use both sets of braces:\overset{?}{=}is what I had to insert to avoid some formatting issues – FShrike Dec 27 '22 at 10:27