I want to prove the claim that for all $n\geq 1,$ we have $${n\choose r} > {n\choose r+1}$$ if and only if $$n-1 \geq r > \frac{1}{2}(n-1).$$
Assume first that $${n\choose r} > {n\choose r+1}.$$ Then we notice that $n\choose r+1$ is defined if and only if $r + 1 \leq n$ which gives us $r\leq n-1.$ Further, from ${n\choose r} > {n\choose r+1}, $ we have \begin{align} \frac{n!}{(n-r)!r!} &> \frac{n!}{(n-r-1)!(r+1)!} \\ \frac{n!}{(n-r)(n-r-1)!r!} &> \frac{n!}{(n-r-1)!(r+1)r!} \\ \frac{1}{n-r} &> \frac{1}{r+1} \\ r+1 &> n - r \\ \end{align} which gives us the desired inequality. For the converse, assume $$n-1 \geq r > \frac{1}{2}(n-1).$$ Since $r \leq n-1 < n,$ both $n \choose r+1$ and $n \choose r$ are defined. From, $r > \frac{1}{2}(n-1),$ we have $r+1 > n-r$. Also, $n - r > 0$ so \begin{align} \frac{1}{n-r} &> \frac{1}{r+1} \\ \frac{n!}{(n-r)(n-r-1)!r!} &> \frac{n!}{(n-r-1)!(r+1)r!} \\ \frac{n!}{(n-r)!r!} &> \frac{n!}{(n-r-1)!(r+1)!} \\ \end{align} which, by definition gives us the inequality we needed.
Please see if my given proof is correct and suggest ways to improve the same.