Suppose $X_{1},\cdots,X_{n}$ are independent random variables from $(\Omega,\mathcal{F})$ to $(\mathbb{R},\mathcal{B}(\mathbb{R}))$; $f:\mathbb R^{n}\mapsto \mathbb R$ and $f\in \mathcal{B}(\mathbb{R}^{n})/\mathcal{B}(\mathbb{R})$. Define $\mathcal{F_{i}}:=\sigma(X_{i})$ where $\sigma(X_{i})=X_{i}^{-1}(\mathcal{B}(\mathbb{R})),i=1,...,n$ and $\mathcal{G}:=\sigma(\cup_{i=1}^{n}\mathcal{F_{i}}).$ Show that $f(X_{1},...,X_{n})\in\mathcal G$.
For any $S\in\mathcal B(\mathbb R)$, since $f$ is a Borel measurable function, $f^{-1}(S)\in\mathcal B(\mathbb R^n)$ obviously .But I don't understand that why we have $\{\omega\in\Omega:(X_{1}(\omega),...,X_{n}(\omega))\in f^{-1}(S)\} \in \mathcal G ?$