You can solve the equations you mentioned with special functions such as the Lambert W function aka Omega function $\operatorname{W}\left( x \right)$
and Wright W function aka Wright Omega $\omega\left( x \right)$ function for x, e.g.:
$$
\begin{align*}
x^{3} &= 2^{x} ~~~~~\quad\qquad\qquad\mid\quad \cdot 2^{-x}\\
x^{3} \cdot 2^{-x} &= 1\\
x^{3} \cdot e^{- \ln\left( 2 \right) \cdot x} &= 1 ~~~\qquad\qquad\qquad\mid\quad \left( \right)^{\frac{1}{3}}\\
x \cdot e^{-\frac{\ln\left( 2 \right)}{3} \cdot x} &= 1 ~~~\qquad\qquad\qquad\mid\quad \cdot \left(
-\frac{\ln\left( 2 \right)}{3} \right)\\
-\frac{\ln\left( 2 \right)}{3} \cdot x \cdot e^{-\frac{\ln\left( 2 \right)}{3} \cdot x} &= -\frac{\ln\left( 2 \right)}{3}\\
\left( -\frac{\ln\left( 2 \right)}{3} \cdot x \right) \cdot e^{-\frac{\ln\left( 2 \right)}{3} \cdot x} &= -\frac{\ln\left( 2 \right)}{3} ~~~~\quad\qquad\mid\quad \operatorname{W}\left( \right)\\
-\frac{\ln\left( 2 \right)}{3} \cdot x &= \operatorname{W}\left( -\frac{\ln\left( 2 \right)}{3} \right) ~~\quad\mid\quad \cdot \left( -\frac{3}{\ln\left( 2 \right)} \right)\\
x &= -\frac{3 \cdot \operatorname{W}\left( -\frac{\ln\left( 2 \right)}{3} \right)}{\ln\left( 2 \right)}\\
x &\approx 1.3735 ~~~~\qquad\qquad\mid\quad \text{via using the main branch}\\
x &\approx 9.9395 ~~~\qquad\qquad\mid\quad \text{via using the branch } -1\\
\end{align*}
$$
However, many equations that contain exponential functions also have no (until now found) non-approximate solutions. The easiest way to find these solutions is usually using Newton's method, e.g.:
$$
\begin{align*}
x^{x} + 2 \cdot x = 5 &\quad\mid\quad -5\\
x^{x} + 2 \cdot x - 5 = 0 &\quad\mid\quad f\left( x \right) := x^{x} + 2 \cdot x - 5\\
x_{n + 1} = x_{n} - \frac{f\left( x_{n} \right)}{f'\left( x_{n} \right)}\\
x_{n + 1} = x_{n} - \frac{x_{n}^{x_{n}} + 2 \cdot x_{n} - 5}{x_{n}^{x_{n}} \cdot \left( \ln\left( x_{n} \right) + 1 \right) + 2} &\quad\mid\quad \text{chose some } x_{1} \text{ like } x_{1} := 1\\
\lim_{{n} \to{\infty}} x_{n + 1} = \lim_{{n} \to{\infty}} x_{n} - \frac{x_{n}^{x_{n}} + 2 \cdot x_{n} - 5}{x_{n}^{x_{n}} \cdot \left( \ln\left( x_{n} \right) + 1 \right) + 2} \approx 1.5349 &\\
\end{align*}
$$