3

(This is a problem in chap 4 of 概率论教程(缪柏其 胡太忠著). )

Set space $(\Omega, \mathscr{A}, P)$, $\mathscr{C}_1, \mathscr{C}_2 \subset \mathscr{A}$, and $\mathscr{C}_1, \mathscr{C}_2$ are both $\sigma$ algebra, $X\in L_1, X_1=E[X|\mathscr{C}_1], X_2=E[X_1|\mathscr{C}_2]$. If $X=X_2, a.s.$, Prove $X_1=X_2, a.s.$.

I have thought about this for a few days, the point is to show that $X=E[X|\mathscr{C}_1], a.s.$, I have got the following result:

  1. $\mathrm{E}\left[ |X_1| \right] =\mathrm{E}\left[ |X_2| \right],\ \mathrm{E}\left[ X_1 \right] =\mathrm{E}\left[ X_2 \right]. $
  2. $\mathrm{E}\left[ |X||\mathscr{C} _1 \right] =|\mathrm{E}\left[ X|\mathscr{C} _1 \right] |,\ \mathrm{E}\left[ |X_1||\mathscr{C} _2 \right] =|\mathrm{E}\left[ X_1|\mathscr{C} _2 \right] |$.

I have read about two different answers, but I feel both of them have some bugs, however, it may provide some directions:

  1. By the equation condition of Jensen inequality.
  2. Try to show $X_1\ge c\,\,\Longleftrightarrow X\ge c,\ \forall c \in \mathbb{R} $.
Zhanxiong
  • 14,040
  • 1
    Welcome to MSE. Your question is phrased as an isolated problem, without any further information or context. This does not match many users' quality standards, so it may attract downvotes, or closed. To prevent that, please [edit] the question. This will help you recognise and resolve the issues. Concretely: please provide context, and include your work and thoughts on the problem. These changes can help in formulating more appropriate answers. – José Carlos Santos Dec 20 '22 at 07:26
  • I have a proof using a theorem from Functional Analysis. If no simpler proof appears by this time tomorrow I will post my proof. – geetha290krm Dec 20 '22 at 11:24
  • @geetha290krm I have found methods we can use to solve this problem, check this problem, I will post the modified answer, but I still expect your proof! – kashadong311 Dec 20 '22 at 14:20

1 Answers1

3

I have found two methods to solve this problem, these methods come from this question. We can simply modify these methods to solve the problem.

  1. Let $h: \mathbb{R}\to\mathbb{R}$ to be a strictly increasing bounded continued function, then $$X_ih\left( X_j \right) \in L_1,\quad i,j=1,2.$$ So $$\mathrm{E}\left[ \left( X_1-X_2 \right) \left( h\left( X_1 \right) -h\left( X_2 \right) \right) \right] \\ =\mathrm{E}\left[ X_1h\left( X_1 \right) \right] -\mathrm{E}\left[ X_2h\left( X_1 \right) \right] -\mathrm{E}\left[ X_1h\left( X_2 \right) \right] +\mathrm{E}\left[ X_2h\left( X_2 \right) \right] ,$$ and since $X_1\in \mathscr{C} _1,\ X_2\in \mathscr{C} _2,$ we have $$ \mathrm{E}\left[ X_2h\left( X_1 \right) \right] =\mathrm{E}\left[ \mathrm{E}\left[ X_2h\left( X_1 \right) |\mathscr{C} _1 \right] \right] \\ =\mathrm{E}\left[ h\left( X_1 \right) \mathrm{E}\left[ X_2|\mathscr{C} _1 \right] \right] \\ =\mathrm{E}\left[ h\left( X_1 \right) \mathrm{E}\left[ X|\mathscr{C} _1 \right] \right] \\ =\mathrm{E}\left[ X_1h\left( X_1 \right) \right], $$ similarly, $\mathrm{E}\left[ X_1h\left( X_2 \right) \right] =\mathrm{E}\left[ X_2h\left( X_2 \right) \right] .$ Thus, $$\mathrm{E}\left[ \left( X_1-X_2 \right) \left( h\left( X_1 \right) -h\left( X_2 \right) \right) \right] =0.$$ So $\left( X_1-X_2 \right) \left( h\left( X_1 \right) -h\left( X_2 \right) \right) =0,\ \mathrm{a}.\mathrm{s}.$ And since $$ \left\{ \left( X_1-X_2 \right) \left( h\left( X_1 \right) -h\left( X_2 \right) \right) =0 \right\} \subset \left\{ X_1-X_2=0 \right\} , $$ we get $X_1=X_2,\ \mathrm{a}.\mathrm{s}.$.

  2. $\forall a \in \mathbb{R},$ we have $$ \mathrm{E}\left[ \left( X_1-X_2 \right) I_{\left\{ X_1\leqslant a \right\}} \right] \\ =\mathrm{E}\left[ X_1I_{\left\{ X_1\leqslant a \right\}} \right] -\mathrm{E}\left[ X_2I_{\left\{ X_1\leqslant a \right\}} \right] \\ =\mathrm{E}\left[ X_1I_{\left\{ X_1\leqslant a \right\}} \right] -\mathrm{E}\left[ \mathrm{E}\left[ X_2I_{\left\{ X_1\leqslant a \right\}}|\mathscr{C} _1 \right] \right] \\ =\mathrm{E}\left[ X_1I_{\left\{ X_1\leqslant a \right\}} \right] -\mathrm{E}\left[ X_1I_{\left\{ X_1\leqslant a \right\}} \right] =0. $$ Also, $$ \mathrm{E}\left[ \left( X_1-X_2 \right) I_{\left\{ X_1\leqslant a \right\}} \right] \\ =\mathrm{E}\left[ \left( X_1-X_2 \right) I_{\left\{ X_1\leqslant a,X_2>a \right\}} \right] +\mathrm{E}\left[ \left( X_1-X_2 \right) I_{\left\{ X_1\leqslant a,X_2\leqslant a \right\}} \right] = 0 , $$ since $\mathrm{E}\left[ \left( X_1-X_2 \right) I_{\left\{ X_1\leqslant a,X_2>a \right\}} \right] \leqslant 0$, we have $\mathrm{E}\left[ \left( X_2-X_1 \right) I_{\left\{ X_1\leqslant a,X_2\leqslant a \right\}} \right] \geqslant 0,$ which leads to $\mathrm{P}\left( X_1\leqslant a,X_2>a \right) =0.$ This further leads to $$ \mathrm{P}\left( X_2>X_1 \right) =\mathrm{P}\left( \bigcup_{a\in \mathbb{R}}{\left\{ X_1\leqslant a,X_2>a \right\}} \right) =0. $$ Similarly, $\mathrm{P}\left( X_1>X_2 \right)=0$, thus $X_1=X_2,\ \mathrm{a}.\mathrm{s}.$

Again these methods come from others, you can check the link to learn the original version.

  • +1. The first proof is simple and elegant. I will not post my proof since you have an elementary proof. – geetha290krm Dec 21 '22 at 05:18
  • 1
    When $EX^{2}<\infty$ we get a very quick proof using FA: Conditional expectations are projection operators. If $P$ and $Q$ are projections on $M$ and $N$ then $(PQ)^{n}$ converges to the projection $R$ on $M \cap N$. This makes $X$ measurable w.r.t. both $\mathcal C_1$ and $\mathcal C_2$ (and all conditioning disappears)! – geetha290krm Dec 21 '22 at 07:20