The integral $\int_{0}^\infty e^{-i\omega t}\,dt$ fails to exist as a Riemann or Lebesgue integral. So, the Fourier transform of the unit step function must be considered in the context of a distribution.
Here, we assume that $\phi\in \mathbb{S}$. Then, we have
$$\begin{align}
\langle \mathscr{F}\{u\}, \phi\rangle&=\langle u, \mathscr{F}\{\phi\}\rangle\\\\
&=\int_0^\infty \int_{-\infty}^\infty \phi(t)e^{-i\omega t}\,dt\,d\omega\\\\
&=\lim_{L\to \infty}\int_0^L \int_{-\infty}^\infty \phi(t)e^{-i\omega t}\,dt\,d\omega\\\\
&=\lim_{L\to \infty}\int_{-\infty}^\infty \phi(t)\int_0^L e^{-i\omega t}\,d\omega\,dt\\\\
&=\lim_{L\to \infty}\int_{-\infty}^\infty \phi(t)\frac{1-e^{-i Lt}}{it}\,dt\\\\
&=\lim_{L\to \infty}\int_{-\infty}^\infty \phi(t)\frac{1-\cos(Lt)}{it}\,dt+\lim_{L\to \infty}\int_{-\infty}^\infty \phi(t)\frac{\sin(Lt)}{t}\,dt\tag1
\end{align}$$
Now, we cannot simply interchange the order of the limit and the integral. Instead, we proceed as follows.
For the first integral on the right-hand side of $(1)$, we can write for any $\delta>0$
$$\begin{align}
\int_{-\infty}^\infty \phi(t)\frac{1-\cos(Lt)}{it}\,dt&=\int_{|t|\le \delta} \phi(t)\frac{1-\cos(Lt)}{it}\,dt+\int_{|t|\ge \delta} \phi(t)\frac{1-\cos(Lt)}{it}\,dt\\\\
&=\underbrace{\int_{|t|\le \delta} (\phi(t)-\phi(0))\frac{1-\cos(Lt)}{it}\,dt}_{=O(\delta)}\\\\
&+\phi(0)\underbrace{\int_{|t|\le \delta} \frac{1-\cos(Lt)}{it}\,dt}_{=0\,\,\text{since the integrand is odd}}\\\\
&+\int_{|t|\ge \delta} \frac{\phi(t)}{it}\,dt\\\\
&-\underbrace{\int_{|t|\ge \delta} \phi(t)\frac{\cos(Lt)}{it}\,dt}_{=O(1/L)\,\,\text{from integrating by parts}}\tag2
\end{align}$$
Hence, letting $L\to \infty$ first, and then $\delta\to 0^+$ we find that
$$\lim_{L\to \infty}\int_{-\infty}^\infty \phi(t)\frac{1-\cos(Lt)}{it}\,dt=\text{PV}\int_{-\infty}^\infty \frac{\phi(t)}{it}\,dt\tag3$$
For the second integral on the right-hand side of $(1)$, we have by integrating by parts with $u=\phi(t)$ and $v=\int_{-\infty}^{Lt} \frac{\sin(t')}{t'}\,dt'$ and applying the Dominated Convergence Theorem
$$\begin{align}
\lim_{L\to\infty}\int_{-\infty}^\infty \phi(t)\frac{\sin(Lt)}{t}\,dt&=-\lim_{L\to\infty}\int_{-\infty}^\infty \phi'(t)\int_{-\infty}^{Lt} \frac{\sin(t')}{t'}\,dt'\,dt\\\\
&= \int_{-\infty}^\infty \phi'(t)\lim_{L\to\infty}\int_{-\infty}^{Lt} \frac{\sin(t')}{t'}\,dt'\,dt\\\\
&= \int_{-\infty}^\infty \phi'(t) \pi u(t)\,dt\\\\
&=\pi \phi(0)\tag4
\end{align}$$
Putting together $(3)$ and $(4)$ in $(1)$ we find that in distribution
$$\mathscr{F}\{u\}(\omega)=\pi\delta(\omega)+\text{PV}\left(\frac1{i\omega}\right)$$