1

Let $(X, \mathcal X, \mu)$ be a $\sigma$-finite measure space and $f, g:X \to \mathbb R \cup \{\pm \infty\}$ $\mu$-measurable.

  • We say that $\int f \mathrm d \mu$ exists if at least $\int f^+ \mathrm d \mu < +\infty$ or $\int f^- \mathrm d \mu < +\infty$. In this case, $$ \int f \mathrm d \mu := \int f^+ \mathrm d \mu - \int f^- \mathrm d \mu \in \mathbb R \cup \{\pm \infty\}. $$
  • We say that $\int f \mathrm d \mu$ is finite if $\int f^+ \mathrm d \mu < +\infty$ and $\int f^- \mathrm d \mu < +\infty$. In this case, $\int f \mathrm d \mu \in \mathbb R$.

We adopt the convention that $a + (\pm\infty) = (\pm\infty)$ for all $a \in \mathbb R$. I'm trying to prove the following statement, i.e.,

Theorem If $\int f \mathrm d \mu$ exists and $\int g \mathrm d \mu$ is finite, then $\int (f+g) \mathrm d \mu$ exists and $$ \int (f+g) \mathrm d \mu = \int f \mathrm d \mu + \int g \mathrm d \mu. $$

In below attempt, I'm stuck at proving $\int (f+g)^- \mathrm d \mu = +\infty$. Could you elaborate on my difficulty?


Proof: WLOG, we assume $\int f^+ \mathrm d \mu < \infty$. We have $(f+g)^+ \le f^+ + g^+$, so $$ \int (f+g)^+ \mathrm d \mu \le \int (f^+ + g^+) \mathrm d \mu = \int f^+ \mathrm d \mu + \int g^+ \mathrm d \mu < +\infty. $$

As such, $\int (f+g) \mathrm d \mu$ exists. If $\int f^- \mathrm d \mu <+ \infty$, the claim follows from the linearity of integral. Now we consider the case $\int f^- \mathrm d \mu =+ \infty$. Then $\int f \mathrm d \mu =- \infty$. It suffices to prove that $\int (f+g)^- \mathrm d \mu = +\infty$.

Akira
  • 17,367
  • I think you'll need to go to the definition of $\int f, d\mu = a$ and "$\int f, d\mu = \infty$" for non-negative $f$. – aschepler Dec 16 '22 at 04:03
  • @aschepler It seems I have found the proof that $\int (f+g)^- \mathrm d \mu = +\infty$. Could you have a check on my below answer? – Akira Dec 16 '22 at 11:21

1 Answers1

0

Below is my proof that $\int (f+g)^- \mathrm d \mu = +\infty$.


We have $$ f^-=(-f)^+ = ((-f-g)+g)^+ \le (-f-g)^+ + g^+=(f+g)^-+g^+. $$

It follows that $$ \begin{align} \int f^- \mathrm d \mu &\le \int ((f+g)^- + g^+) \mathrm d \mu \\ &\overset{(\star)}{=} \int (f+g)^- \mathrm d \mu + \int g^+ \mathrm d \mu. \end{align} $$

Here $(\star)$ is because $(f+g)^-$ and $g^+$ are non-negative. Because $\int g^+ \mathrm d \mu <+\infty$, we can subtract it from both sides of $\int f^- \mathrm d \mu \le \int (f+g)^- \mathrm d \mu + \int g^+ \mathrm d \mu$. Then we get $$ \int (f+g)^- \mathrm d \mu \ge \int f^- \mathrm d \mu - \int g^+ \mathrm d \mu = +\infty -\int g^+ \mathrm d \mu = +\infty. $$

This completes the proof.

Akira
  • 17,367