How can one prove that $|n^s|= n^{Re(s)}$, where $n \in \mathbb{N}$ and $s \in \mathbb{C}$, such that $Re(s) > 1$ (I found this on the link Convergence of $\zeta(s)$ on $\Re(s)> 1$)? I tried: $|n ^s|= |e^{ s log n}| = | e^{ s( ln(n) + i Arg (n) + 2 k \pi i) } |= |e^{ s( ln(n) + 2 k \pi i) }| = | e^{ (x + iy ) (ln (n) + 2 k \pi i) } | = | e^{x ln (n) + i y ln(n) +2 k \pi x i - 2 k \pi y )} | = | e^{x ln (n) - 2 k \pi y } | = n^x e^{- 2 k \pi y } $.
How do we obtain $n^x$?