I have see this formula in Wolframe Alpha Double series's documentation, but what is the procces of proving? $$\sum _{a=1}^{\infty }\sum _{b=1}^{\infty }\frac{\left(-1\right)^{a+b}}{\left(a^2+b^2\right)^s}=\eta \left(2s\right)-\eta \left(s\right)\beta \left(s\right) $$ Where $$ \beta \left(s\right)=\sum _{n=1}^{\infty }\frac{\left(-1\right)^{n-1}}{\left(2n-1\right)^s}$$
$$\eta \left(s\right)=\sum _{n=1}^{\infty }\frac{\left(-1\right)^{n-1}}{n^s}$$