Such infinite products can be evaluated using theta functions and their special values,
Define the theta function for $|{q}| < 1$,
\begin{equation}
\phi(q) = \sum_{n=-\infty}^\infty q^{n^2}
\end{equation}
One of its remarkable identities is that,
\begin{equation}
\phi(-q) = \sum_{n=-\infty}^\infty (-1)^{n}q^{n^2} = \prod_{n=1}^\infty \frac{1-q^n}{1+q^n}
\end{equation}
Now, we can rewrite the infinite product,
\begin{align}
\prod_{n=1}^\infty \coth(n\frac{\pi}{2}) = \prod_{n=1}^\infty \frac{e^{n\pi/2} + e^{-n\pi/2}}{e^{n\pi/2} - e^{-n\pi/2}} = \prod_{n=1}^\infty \frac{1 + e^{-n\pi}}{1 - e^{-n\pi}} = \frac{1}{\phi(-e^{-\pi})}
\end{align}
This is a special value of the theta function and can be written in close form with
$$\phi(-e^{-\pi}) = \Big(\frac{\pi}{2}\Big)^{1/4}\frac{1}{\Gamma\Big(\frac{3}{4}\Big)}$$
It gives us,
\begin{equation}
\prod_{n=1}^\infty \coth\Big(n\frac{\pi}{2}\Big) = \Big(\frac{2}{\pi}\Big)^{1/4}\Gamma\Big(\frac{3}{4}\Big)
\end{equation}
Note :
The special value of $\phi(-e^{-\pi})$ is not explicitly given in the link above, but can be computed from the others using an other identity of the theta function,
\begin{equation}
\phi(q^4) = \frac{1}{2}(\phi(q) + \phi(-q))
\end{equation}
which implies that,
\begin{equation}
\phi(-e^{-\pi}) = 2\phi(e^{-4\pi}) - \phi(e^{-\pi})
\end{equation}