I read an answer of Partial derivative of a composite function on math.stackexchange.com. The writer claimed that to solve a partial derivative of a multiple-variable function
$$ f(x,y) \ = \ \varphi (\ \underbrace{\frac yx}_u \ , \ \underbrace{ x^2-y^2}_v \ , \ \underbrace{y-x}_w \ ) \ , $$
we can use the multivariate extension of the Chain Rule
$$ \frac{\partial f}{\partial x} \ = \ \frac{\partial \varphi}{\partial u}\frac{\partial u}{\partial x} \ + \ \frac{\partial \varphi}{\partial v}\frac{\partial v}{\partial x} \ + \ \frac{\partial \varphi}{\partial w}\frac{\partial w}{\partial x} $$
I know the derivatives and partial derivatives are defined by
$$ \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} $$
and
$$ \frac{\partial f(x, y)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} $$
I also what to write the formula of the (partial) chain rule to the definition form. I got four versions below. Which is the correct expression without derivative operators for the equation got by the chain rule?
$$ \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \frac{\varphi (u(x + \Delta x, y), v, w) - \varphi (u(x, y), v, w)}{u(x + \Delta x, y) - u(x, y)}\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + \cdots \tag{1} $$ $$ \lim_{\Delta x, \Delta y \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \frac{\varphi (u(x + \Delta x, y), v, w) - \varphi (u(x, y), v, w)}{u(x + \Delta x, y + \Delta y) - u(x, y)}\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + \cdots \tag{2} $$ $$ \lim_{\Delta x, \Delta y \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \frac{\varphi (u(x + \Delta x, y + \Delta y), v, w) - \varphi (u(x, y), v, w)}{u(x + \Delta x, y) - u(x, y)}\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + \cdots \tag{3} $$ $$ \lim_{\Delta x, \Delta y \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \frac{\varphi (u(x + \Delta x, y + \Delta y), v, w) - \varphi (u(x, y), v, w)}{u(x + \Delta x, y + \Delta y) - u(x, y)}\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + \cdots \tag{4} $$
Updated
Here is the full expansion of (1)
$$ \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \frac{\varphi (u(x + \Delta x, y), v, w) - \varphi (u(x, y), v, w)}{u(x + \Delta x, y) - u(x, y)} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} \\ + \frac{\varphi (u, v(x + \Delta x, y), w) - \varphi (u, v(x, y), w)}{v(x + \Delta x, y) - v(x, y)} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \\ + \frac{\varphi (u, v, w(x + \Delta x, y)) - \varphi (u, v, w(x, y))}{w(x + \Delta x, y) - w(x, y)} \frac{w(x + \Delta x, y) - w(x, y)}{\Delta x} $$