This is a direct translation of Abel's nice paper 'Note sur la fonction $\psi x=x+\frac{x^2}{2^2}+\frac{x^3}{3^2}+\cdots$'.
Start with $\;\displaystyle\operatorname{Li}_2(x)=-\int\frac{\log(1-x)}x\,dx\;$
and set $\;\displaystyle x:=\frac a{1-a}\frac y{1-y}\;$ with '$a$' constant.
Then $\;\log(x)=\log(a)-\log(1-a)+\log(y)-\log(1-y)\,$ and the differentials will verify :
$$\frac {dx}x=\frac {dy}y+\frac {dy}{1-y}$$
Since $\,(1-a)(1-y)-ay=1-a-y\,$ we get :
(factorizing further $(1-y)$ in the logarithm for $\frac{dy}y\;$ and $(1-a)$ for $\frac{dy}{1-y}$)
\begin{align}
\operatorname{Li}_2\left(\frac a{1-a}\frac y{1-y}\right)&=-\int\left(\frac{dy}y+\frac{dy}{1-y}\right)\log\frac{1-a-y}{(1-a)(1-y)}\\
&=-\int\frac{dy}y\log\left(1-\frac y{1-a}\right)+\int \frac{dy}y\log(1-y)\\
&\quad-\int\frac{dy}{1-y}\log\left(1-\frac a{1-y}\right)+\int \frac{dy}{1-y}\log(1-a)\\
\end{align}
But the integrals at the right may be written as $\operatorname{Li}_2$ functions since :
\begin{align}
&\int\frac{dy}y\log\left(1-\frac y{1-a}\right)=-\operatorname{Li}_2\left(\frac y{1-a}\right),\\
&\int\frac{dy}y\log\left(1-y\right)=-\operatorname{Li}_2\left(y\right);\\
\end{align}
so that $$ \operatorname{Li}_2\left(\frac a{1-a}\frac y{1-y}\right)=\operatorname{Li}_2\left(\frac y{1-a}\right)-\operatorname{Li}_2\left(y\right)-\log(1-a)\log(1-y)-\int\frac{dy}{1-y}\log\left(1-\frac a{1-y}\right)$$
Set $z:=\dfrac a{1-y}$ i.e. $1-y=\dfrac az,\;dy=\dfrac {a\,dz}{z^2}$ to get :
$$\int\frac{dy}{1-y}\log\left(1-\frac a{1-y}\right)=\int\frac{dz}z\log(1-z)=-\operatorname{Li}_2\left(z\right)=-\operatorname{Li}_2\left(\frac a{1-y}\right)$$
$$\operatorname{Li}_2\left(\frac a{1-a}\frac y{1-y}\right)=\operatorname{Li}_2\left(\frac y{1-a}\right)+\operatorname{Li}_2\left(\frac a{1-y}\right)-\operatorname{Li}_2\left(y\right)-\log(1-a)\log(1-y)+C$$
The arbitrary constant $C$ will be determined by $\,y=0$ to get $\,C=-\operatorname{Li}_2(a)$.
Replacing $a$ by $x$ we get :
$$\operatorname{Li}_2\left(\frac x{1-x}\frac y{1-y}\right)=\operatorname{Li}_2\left(\frac y{1-x}\right)+\operatorname{Li}_2\left(\frac x{1-y}\right)-\operatorname{Li}_2\,y-\operatorname{Li}_2\,x-\log(1-x)\log(1-y)$$
Set $\;u:=\dfrac x{1-y},\;v:=\dfrac y{1-x}\,$ to conclude :
$$\operatorname{Li}_2(u v)=\operatorname{Li}_2(u) + \operatorname{Li}_2(v) - \operatorname{Li}_2(x) - \operatorname{Li}_2(y)-\log(1-x) \log(1-y) $$