Which step does this go wrong?
$$\frac{d}{dx} x^n = nx^{n-1}$$
$$∫ \frac{d}{dx} \left(x^{n} \right) dx = ∫ n x^{n-1} dx$$
$$x^n + c = n ∫ x^{n-1} dx$$
$$\frac{x^n}{n} + c = ∫ x^{n-1} dx, n≠0$$
$$\lim_{n→0} \left[ \frac{x^{n}}{n} + c = ∫ x^{n-1} dx \right]$$
However
$$\lim_{n→0} \left[ \frac{x^{n}}{n}+c \right] DNE$$
Therefore
$$ \lim_{n→0} \left[ ∫ x^{ n-1} dx \right] DNE$$
I understand that $∫ x^{-1} dx = \ln(x)$, but why doesn't the limit work?