Is it possible to use Fourier transform to evaluate the integral $$\int_{-\infty}^{+\infty}\left(\frac{\sin x}{x}\right)^3dx$$
Asked
Active
Viewed 94 times
0
-
1See (37) here – K.defaoite Dec 08 '22 at 14:36
-
https://math.stackexchange.com/questions/894649/closed-form-for-integral-of-integer-powers-of-sinc-function – Doug Dec 08 '22 at 15:13
1 Answers
3
Hint: Let $$ f(x)=\bigg(\frac{\sin x}{x}\bigg)^2,g(x)=\frac{\sin x}{x} $$ and then $$ \hat f(\xi)=?, \hat g(\xi)=?$$ Next use the Parsevell Identity $$ \int_{-\infty }^{\infty }f(x)\bar{g(x)} dx=\int_{-\infty }^{\infty }\hat f(\xi) \bar{\hat g(\xi)}d\xi. $$

xpaul
- 44,000