Trying to prove Minkowski's inequality
$$\int dy \bigg[ \int f(x,y)^p dx\bigg]^{1/p} \geq \bigg[ \int dx \bigg(\int f(x,y)dy\bigg)^p\bigg]^{1/p}$$
Trying to prove Minkowski's inequality
$$\int dy \bigg[ \int f(x,y)^p dx\bigg]^{1/p} \geq \bigg[ \int dx \bigg(\int f(x,y)dy\bigg)^p\bigg]^{1/p}$$
Here is an approach using Fubini-Tonelli and Hölder's inequality. It does not use the triangle inequality.
We define $h(x) := \int_{\Omega_1} f(x,y) \mathrm{d}y$ for all $x \in \Omega_2$. We have to estimate $\|h\|_p$. We take an arbitrary $g \in L^{q}(\Omega_2)$ and get \begin{align*} \int_{\Omega_2} h(x) g(x) \mathrm{d}x &= \int_{\Omega_2} \int_{\Omega_1} f(x,y) g(x) \mathrm{d} y \mathrm{d} x \\ &= \int_{\Omega_1} \int_{\Omega_2} f(x,y) g(x) \mathrm{d} x \mathrm{d} y \\ &\le \int_{\Omega_1} \left(\int_{\Omega_2} f(x,y)^p \mathrm{d}x\right)^{1/p} \left(\int_{\Omega_2} g(x)^{q} \mathrm{d} x\right)^{1/q} \mathrm{d} y \\ &= \int_{\Omega_1} \left(\int_{\Omega_2} f(x,y)^p \mathrm{d} x\right)^{1/p} \mathrm{d} y \|g\|_{q} . \end{align*} Here, we used the Fubini-Tonelli theorem and Hölders inequality. Now, \begin{equation*} \|h\|_p = \sup_{\|g\|_{q} \le 1} \int_{\Omega_2} h(x) g(x) \mathrm{d}x \end{equation*} yields $$ \left( \int_{\Omega_2}\left(\int_{\Omega_1} f(x,y) \mathrm{d}y\right)^p \mathrm dx \right)^{1/p} = \|h\|_p \le \int_{\Omega_1} \left(\int_{\Omega_2} f(x,y)^p \mathrm{d} x\right)^{1/p} \mathrm{d} y $$