How do I solve this equation for P? For everything I've tried, P ends up trapped in an exponent or another natural log.
$$ \ln\left(\frac{GC}{a}\right) = hP + \ln(P) $$
How do I solve this equation for P? For everything I've tried, P ends up trapped in an exponent or another natural log.
$$ \ln\left(\frac{GC}{a}\right) = hP + \ln(P) $$
Solution will involve the Lambert W function.
The title question is the definition: $$ x + \ln x = \ln c \quad\Leftrightarrow\quad xe^x = c \quad\Leftrightarrow\quad x = W(c) $$ For the more complicated question... $$ \ln\left(\frac{GC}{a}\right) = hP + \ln(P) \\ \frac{GC}{a} = Pe^{hP} \\ \frac{hGC}{a} = hPe^{hP} \\ W\left(\frac{hGC}{a}\right) = hP \\ \frac{1}{h}W\left(\frac{hGC}{a}\right) = P $$