I would like to show that the series $$ \sum_{n=1}^\infty \frac{i^n}{n} $$ converges.
My first idea was to use ratio test but that does not help since $$ \left|\frac{a_{n+1}}{a_n}\right|=\frac{n}{n+1}\to 1 $$
I would like to show that the series $$ \sum_{n=1}^\infty \frac{i^n}{n} $$ converges.
My first idea was to use ratio test but that does not help since $$ \left|\frac{a_{n+1}}{a_n}\right|=\frac{n}{n+1}\to 1 $$
Consider the below series: $$\sum _{n=1}^{\infty }\frac{x^n}{n}=-\ln \left(1-x\right)$$
$$x=i\Rightarrow \sum _{n=1}^{\infty }\frac{i^n}{n}=-\ln \left(1-i\right)=-\frac{1}{2}\ln \left(2\right)+\frac{i\pi }{4}$$ Finally: $$\sum _{n=1}^{\infty }\frac{i^n}{n}=-\frac{1}{2}\ln \left(2\right)+\frac{\pi }{4}i$$ note: $$\ln \left(a+bi\right)=\frac{1}{2}\ln \left(a^2+b^2\right)+i\arctan \left(\frac{b}{a}\right)$$