Prove: $(A')^{-1}=\left(A^{-1}\right)'$.
$$\begin{align*}\left(A^{-1}\right)'=\left(\frac{1}{\det (A)}A^*\right)'=\frac{1}{\det (A)}\left(A^*\right)'=\frac{1}{\det (A)}(A')^*=(A')^{-1}\end{align*}$$
Is it right?(This is the question...)Duplicate?
$A'$ is the transpose of A.
$A^*$ is the adjugate matrix