-1

Prove: $(A')^{-1}=\left(A^{-1}\right)'$.

$$\begin{align*}\left(A^{-1}\right)'=\left(\frac{1}{\det (A)}A^*\right)'=\frac{1}{\det (A)}\left(A^*\right)'=\frac{1}{\det (A)}(A')^*=(A')^{-1}\end{align*}$$

Is it right?(This is the question...)Duplicate?


$A'$ is the transpose of A.

$A^*$ is the adjugate matrix

2 Answers2

2

I'm not sure $\left(A^*\right)'=\left(A'\right)^*$ is easier to prove than your statement.

You probably know $\left(AB\right)'=B'A'$. From that $I=I'=\left(AA^{-1}\right)'=\left(A^{-1}\right)'A'$ so $\left(A'\right)^{-1}=\left(A^{-1}\right)'$.

xavierm02
  • 7,495
2

More simply:

$(A')\left(A^{-1}\right)'= \left(A^{-1} A\right)'=I'=I$, hence $A'$ is ionverse to $\left(A^{-1}\right)'$.

Boris Novikov
  • 17,470