This is a typical textbook-example level question.
As I said in the comment, change the variable $x = \sqrt u$. Note the following
$$
|\sin (u)| \geqslant |\sin(u)|^2 = \sin (u)^2
$$
where $\geqslant$ holds because $|\sin (u)| \in [0,1]$, and $=$ follows the operation rules of$ |\cdot|$. These are non-negative, so nothing to worry here. Proceed: break the integral as
$$
\int_0^\infty \frac {|\sin (u)|} {2\sqrt u} \,\mathrm du = \left(\int_0^{1} + \int_1^\infty\right) \cdots,
$$
then the $[0,1]$ part converges since $|\sin (u)| = \sin (u) \sim u [u \to 0^+]$, and the whole function under $\int$ satisfies $|\sin (u)|/2 \sqrt u \sim \sqrt u/2 [u \to 0^+]$.
For the $[1, +\infty)$ part, apply the trig equality
$$
\sin (u)^2 = \frac 12 (1 - \cos (2u)),
$$
and note that
$$
\int_1^\infty \frac 1{4\sqrt u} \mathrm du
$$ diverges [via direct computation], while
$$
\int_1^\infty \frac {\cos (2u)} {4\sqrt u}\,\mathrm du
$$ converges by the Dirichlet test: $1/4 \sqrt u \searrow 0 [u \to +\infty]$, and $\int_1^A \cos (2u)\, \mathrm d u$ is bounded for $A \in (1, +\infty)$. All in all,
$$
\int_1^\infty \frac {1 -\cos (2u)}{4\sqrt u}\, \mathrm du
$$ diverges as a sum of a convergent and a divergent improper integrals. Comparison test [valid, since $|\sin u| \geqslant (1 - \cos (2u))/2 \geqslant 0$ holds for all real $u$] concludes that
$$
\int_1^\infty \frac {|\sin u|}{2\sqrt u} \, \mathrm du
$$ diverges.
Finally,
$$
\int_0^\infty \frac {|\sin u|}{2 \sqrt u} \,\mathrm du
$$
diverges as a sum of two improper integrals, one of which converges while the other diverges. Therefore
$$
\boldsymbol{
\int_0^\infty \sin (x^2) \,\mathrm dx
}
$$ converges conditionally.