We know that $$ x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots (-1)^n \frac{x^{n+1}}{n+1} + \cdots = \log (1+x) $$ whenever $-1<x<1$. What can we say if $x=1$?
That is, does the series $$ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots (-1)^n \frac{1}{n+1} + \cdots $$ converge to $\log 2$? If so, how to prove this fact rigorously?
And what about the behavior of the series $$ x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots (-1)^n \frac{x^{2n+1}}{2n+1} + \cdots, $$
which converges to $\arctan x$ for $-1<x<1$, at the points $x = \pm 1$?