How do prove this triple integral? $$\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\frac{1}{2-zx^{2}-zy^{2}}dxdydz=\ln(2^{G})$$ where G is Catalan's constant.
As my try I only reach to this hard single integral: $$\int _0^1\frac{\operatorname{Li}_2\left(\frac{1+x^2}{2}\right)}{1+x^2}dx=G\ln \left(2\right)$$