I'm trying to give a shorter alternative proof to this result, i.e.,
Theorem Let $A,B$ be non-empty and $f:A \times B \to \mathbb R \cup \{\pm\infty\}$. Then $$ \sup_{a \in A} \sup_{b \in B} f(a,b) = \sup_{(a,b) \in A \times B} f(a,b)= \sup_{b \in B} \sup_{a \in A} f(a,b) . $$
Could you have a check on my below attempt?
Proof By symmetry, it suffices to prove that $$ \sup_{a \in A} \sup_{b \in B} f(a,b) =: \alpha = \beta:=\sup_{(a,b) \in A \times B} f(a,b). $$
- Let $(a_n) \subset A$ such that $$ \sup_{b \in B} f(a_n,b) \uparrow \alpha \quad \text{as} \quad n \to \infty. $$
For each $a_n$, let $(b_n^m)_m \subset B$ such that $$ f(a_n,b_n^m) \uparrow \sup_{b \in B} f(a_n,b) \quad \text{as} \quad m \to \infty. $$
This implies $$ \lim_n \lim_m f(a_n, b_n^m) = \alpha. $$
We have $f(a_n, b_n^m) \le \beta$ for all $n, m \in \mathbb N$, so $\alpha \le \beta$.
- Let $(a'_n, b'_n) \subset A \times B$ such that $$ f(a_n', b'_n) \uparrow \beta \quad \text{as} \quad n \to \infty. $$
We have $$ f(a_n', b'_n) \le \sup_{b \in B} f(a'_n,b) \le \alpha \quad \forall n \in \mathbb N, $$ so $\beta \le \alpha$. This completes the proof.