Let $(\Omega,\Sigma,\mu)$ be an abstract measure space. Let $\Phi:\mathbb{R}\to\mathbb{R^+}\cup\{+\infty\}$ be a convex function such that $\Phi(0)=0,\Phi(-x)=\Phi(x)$ and $lim_{x\to\infty}\Phi(x)=\infty$.
Define a set , $$L^{\Phi}=\{f:\Omega\to\mathbb{R}\text{/ f is measurable,}\int_{\Omega}\Phi(|\alpha f|)d\mu<\infty\text{ for some $\alpha>0$ }\}$$
My first question is, how we can say that $\Phi(f)$ is measurable.\ second question is, in the book it is written that if $\Phi(x)=0 : 0\leq x<1$ and $=\infty : x>1$ then $L^{\Phi}=L^{\infty}?$ How we got this one??
I know the definition of $L^{\infty }=\{f:\Omega\to\mathbb{R}\text{/ f is measurable},||f||_{\infty}<\infty\}$ where, $||f||_{\infty}=ess\hspace{0.2mm}sup|f(x)|=inf\{M\geq 0/ |f(x)|\leq M\text{ a.e }\}$