First let's look at the infinity norm, $\| g \|_\infty = \max_{x\in[0,1]} |g(x)|$.
Claim: In the $C[0,1], \|\cdot\|_\infty$ metric space, if a sequence of functions $(g_n)$ converges to $g$, then at each $x \in [0,1]$, the sequence $g_n(x)$ converges to $g(x)$.
Proof: Let $g_n \in C[0,1]$ be a sequence of functions which converges to a function $g \in C[0,1]$, and let $x$ be any arbitrary point in $[0,1]$. Given a real $\epsilon > 0$, by convergence of $(g_n)$ to $g$, there is a natural $N$ such that
$$ n > N \implies \|g_n - g\|_\infty < \epsilon \iff \max_{t\in[0,1]} |g_n(t)-g(t)| < \epsilon $$
By the definition of $\max$, $|g_n(x)-g(x)| \leq \max_{t\in[0,1]}|g_n(t)-g(t)| < \epsilon$. Since this $N$ exists for every $\epsilon > 0$, this has proved that $\lim_{n \to \infty} g_n(x) = g(x)$.
So if $(f_n)$ converges to a function $f$, then for every $x$ we must have $f(x) = \lim_{n \to \infty} f_n(x)$, and $f$ must be the function
$$ f(x) = \begin{cases} 0 & x<1 \\ 1 & x=1 \end{cases} $$
Since this function is not continuous, it's not possible that $(f_n)$ converges to a function in $C[0,1]$. In other words, $(f_n)$ is not convergent.
Now look at the $1$-norm, $\|g\|_1 = \int_0^1 g(x)\, dx$. We know that the value of an integral does not change if the value of the integrand function changes at a finite number of points. So although the pointwise limit of $(f_n)$ is not continuous, there's a similar function which is "mostly equal to" the pointwise limit: the constant function $f(x)=0$. To check whether $(f_n) \to f$, we can explicitly evaluate the limit of the difference:
$$ \begin{align*}
\lim_{n \to \infty} \|f_n-f\| &= \lim_{n \to \infty} \int_0^1 (f_n(x)-f(x))\, dx \\
&= \lim_{n \to \infty} \int_0^1 (x^n-0)\, dx \\
&= \lim_{n \to \infty} \left(\frac{1^{n+1}}{n+1} - \frac{0^{n+1}}{n+1}\right) \\
&= \lim_{n \to \infty} \frac{1}{n+1} \\
\lim_{n \to \infty} \|f_n-f\| &= 0
\end{align*} $$
So yes, in the $C[0,1],\|\cdot\|_1$ metric space, $(f_n)$ converges to the zero function.