I came up with a Solution for $\displaystyle\lim_{n\to\infty}\sqrt[3]{(n+1)(n+2)(n+3)}-n$
That's my Solution:
$\sqrt[3]{(n+1)(n+2)(n+3)}-n$
\begin{aligned}
&=\frac{\left(\sqrt[3]{n^3+6 n^2+11 n+6}-n\right)\left(n^2+n \sqrt[3]{n^3+6 n^2+11 n+6}+\left(n^3+6 n^2+11 n+6\right)^{2 / 3}\right)}{\left(n^2+n \sqrt[3]{n^3+6 n^2+11 n+6}+\left(n^3+6 n^2+11 n+6\right)^{2 / 3}\right)}\\
&=\frac{6 n^2+11 n+6}{n^2+n \sqrt[3]{n^3+6 n^2+11 n+6}+\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}\\
&\lim_{n\to \infty}\frac{n^2(6+\frac{11}{n}+\frac{6}{n^2})}{n^2\left(1+\frac{n \sqrt[3]{n^3+6 n^2+11 n+6}+\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}\right)}\\
&=\lim_{n\to \infty}\frac{n^2(6+\frac{11}{n}+\frac{6}{n^2})}{n^2}\lim_{n\to \infty}\frac{1}{1+\frac{n \sqrt[3]{n^3+6 n^2+11 n+6}+\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}}\\
&=6\frac{1}{\displaystyle{\lim_{n\to \infty}}1+\frac{n \sqrt[3]{n^3+6 n^2+11 n+6}+\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}}\\
&=6\frac{1}{1+\displaystyle{\lim_{n\to \infty}}\frac{n \sqrt[3]{n^3+6 n^2+11 n+6}+\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}}\\
&=\frac{6}{1+\displaystyle{\lim_{n\to \infty}}\frac{\sqrt[3]{n^3+6 n^2+11 n+6}}{n}+\frac{\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}}\\
&=\frac{6}{1+\left(\displaystyle{\lim_{n\to \infty}}\frac{\sqrt[3]{n^3+6 n^2+11 n+6}}{n}\right)+\left(\displaystyle{\lim_{n\to \infty}}\frac{\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}\right)}\\
&=\frac{6}{1+\left(\displaystyle{\lim_{n\to \infty}}\sqrt[3]{\frac{n^3+6 n^2+11 n+6}{n^3}}\right)+\left(\displaystyle{\lim_{n\to \infty}}\frac{\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}\right)}\\
&=\frac{6}{1+\left(\displaystyle{\lim_{n\to \infty}}\sqrt[3]{\frac{1+\frac{6}{n}+\frac{11}{n^2}+\frac{6}{n^3}}{1}}\right)+\left(\displaystyle{\lim_{n\to \infty}}\frac{\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}\right)}\\
&=\frac{6}{1+1+\left(\displaystyle{\lim_{n\to \infty}}\frac{\left(n^3+6 n^2+11 n+6\right)^{2 / 3}}{n^2}\right)}\\
&=\frac{6}{1+1+\left(\displaystyle{\lim_{n\to \infty}}\left(\frac{n^3+6 n^2+11 n+6}{n^3}\right)^{2 / 3}\right)}\\
&=\frac{6}{1+1+\left(\displaystyle{\lim_{n\to \infty}}\frac{1+\frac{6}{n}+\frac{11}{n^2}+\frac{6}{n^3}}{1}\right)^{2 / 3}}\\
&=\frac{6}{1+1+1}=2\\
\end{aligned}
The question I wanna ask is there a more elegant way to solve this problem?