1

We are given a hint to show that both sides are equal to $\binom{2n}{n+1}$

For the right side, I have computed that

$$\frac{1}{2}\binom{2n+2}{n+1} - \binom{2n}{n}$$ $$=> \frac{(2n+2)!}{2((n+1)!)^2} - \frac{(2n)!}{n!^2}$$ $$=> \frac{(2n)!}{n!^2} * \left [ \frac{(2n+2)(2n+1)}{2(n+1)(n+1)} - 1\right ]$$ $$=> \frac{2n!}{(n!)^2}\left [ \frac{2n+1}{n+1} - \frac{n+1}{n+1}\right ]$$ $$=> \frac{2n!}{(n!)^2} * \frac{n}{n+1}$$ $$=> \frac{2n!}{n(n-1)!n!} * \frac{n}{n+1}$$ $$=> \frac{2n!}{n!(n+1)(n-1)!}$$ $$=> \frac{2n!}{(n-1)!(n+1)!}$$ $$=> \binom{2n}{n+1}$$

However, the left side is really giving me some trouble. I am not sure how to deal with the summation. Any help would be appreciated.

RobPratt
  • 45,619
Tom Brady
  • 39
  • 3

1 Answers1

3

We have

$$\sum_{k=1}^n {n\choose k} {n\choose n+1-k} = [z^{n+1}] (1+z)^n \sum_{k=1}^n {n\choose k} z^k \\ = [z^{n+1}] (1+z)^n \sum_{k=0}^n {n\choose k} z^k = [z^{n+1}] (1+z)^n (1+z)^n = [z^{n+1}] (1+z)^{2n} \\ = {2n\choose n+1}.$$

Marko Riedel
  • 61,317