Let $X_1,X_2,\ldots$ be iid random variables. I want to show that $\mathbb{P}(|X_n|\geq n \text{ infinitely often})=0$ if and only if $\mathbb{E}(|X_1|)<\infty$.
I think I can use Borel Cantelli to show at least one direction, but then I need to show that if $\mathbb{E}(|X_1|)=\int_0^\infty \mathbb{P}(|X_1|\geq n)<\infty$, then $\sum_{n=1}^\infty \mathbb{P}(|X_n|\geq n)=\sum_{n=1}^\infty \mathbb{P}(|X_1|\geq n)<\infty$. Can I simply say that $\sum_{n=1}^\infty \mathbb{P}(|X_1|\geq n)\leq \int_0^\infty \mathbb{P}(|X_1|\geq n)<\infty$?
Also, I am not sure how to get the converse.